Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T08:32:39.616Z Has data issue: false hasContentIssue false

Neurocognitive Development and Behavioral Outcome of 2-Year-Old Children with Univentricular Heart

Published online by Cambridge University Press:  13 October 2011

Riina Puosi*
Affiliation:
Division of Child Neurology, Helsinki University Central Hospital, Helsinki, Finland
Marit Korkman
Affiliation:
University of Helsinki, Helsinki, Finland
Anne Sarajuuri
Affiliation:
Division of Child Neurology, Helsinki University Central Hospital, Helsinki, Finland
Eero Jokinen
Affiliation:
Division of Pediatrics, Helsinki University Central Hospital, Helsinki, Finland
Leena Mildh
Affiliation:
Department of Anesthesia and Intensive Care, Helsinki University Central Hospital, Helsinki, Finland
Ilkka Mattila
Affiliation:
Division of Pediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
Tuula Lönnqvist
Affiliation:
Division of Child Neurology, Helsinki University Central Hospital, Helsinki, Finland
*
Correspondence and reprint requests to: Riina Puosi, Division of Child Neurology, Helsinki University Central Hospital, P.O. Box 280, 00029 HUS, Finland. E-mail: [email protected]

Abstract

Recent advances in the treatment of children with severe congenital heart defects, such as hypoplastic left heart syndrome (HLHS) and other forms of univentricular heart (UVH), have significantly improved their survival rates. However, these children are at risk for various neurodevelopmental deficits. The aim of the present study was to assess cognitive development, expressive language, and behavior in 30-month-old children with univentricular heart. The participants were 22 children with HLHS, 14 with UVH, and 41 healthy control subjects. The Bayley Scales of Infant Development II, MacArthur Communicative Development Inventories, and Child Behavior Checklist were used for assessments. The results revealed that children with HLHS exhibited a significantly lower mean mental development index, more delays in expressive language functions, and more behavioral problems than did the control children. Two children with HLHS (9%) had mental development indexes below 50, indicating significantly delayed performance. The children with UVH differed from the control children with respect to their lower mean mental development index. These findings suggest that at the age of 30 months, neurodevelopmental deficits are especially prevalent in children with HLHS. Thus, early developmental screening, intervention, and neuropsychological follow-up until school age is recommended particularly for the children with HLHS. (JINS, 2011, 17, 1094–1103)

Type
Regular Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T.M., Rescorla, L.A. (2000). Manual for the ASEBA preschool forms and profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.Google Scholar
Atallah, J., Dinu, I.A., Joffe, A.R., Robertson, C.M., Sauve, R.S., Dyck, J.D., Rebeyka, I.M. (2008). Two-year survival and mental and psychomotor outcomes after the Norwood procedure. Circulation, 118, 14101418. doi:10.1161/CIRCULATIONAHA.107.741579CrossRefGoogle ScholarPubMed
Ballweg, J.A., Wernovsky, G., Gaynor, J.W. (2007). Neurodevelopmental outcome following congenital heart surgery. Pediatric Cardiology, 28, 126133. doi:10.1007/s0246-006-1450-9CrossRefGoogle ScholarPubMed
Bayley, N. (1993). Bayley Scales of Infant Development (2nd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Bellinger, D.C., Wypij, D., duPlessis, A.J., Rappaport, L.A., Jonas, R.A., Wernovsky, G., Newburger, J.W. (2003). Neurodevelopmental status at eight years in children with dexto-transposition of the great arteries: The Boston circulatory arrest trial. The Journal of Thoracic and Cardiovascular Surgery, 126, 13851396. doi:10.1016/S0022-5223(03)00711-6CrossRefGoogle Scholar
Bellinger, D.C., Wypij, D., Kuban, K.C.K., Rappaport, L.A., Hickey, P.R., Wernovsky, G., Newburger, J.W. (1999). Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest of low-flow cardiopulmonary bypass. Circulation, 100, 526532.CrossRefGoogle ScholarPubMed
Brosig, C.L., Mussatto, K.A., Kuhn, E.M., Tweddell, J.S. (2007a). Neurodevelopmental outcome in preschool survivors of complex congenital heart disease: Implications for clinical practice. Journal of Pediatric Health Care, 21, 312. doi:10.1016/j.pedhc.2006.03.008CrossRefGoogle ScholarPubMed
Brosig, C.L., Mussatto, K.A., Kuhn, E.M., Tweddell, J.S. (2007b). Psychosocial outcomes for preschool children and families after surgery for complex congenital heart disease. Pediatric Cardiology, 28, 255262. doi:10.1007/s00246-006-0013-4CrossRefGoogle ScholarPubMed
Creighton, D.E., Robertson, C.M., Sauve, R.S., Moddemann, D.M., Alton, G.Y., Nettel-Aguirre, A., Rebeyka, I.M. (2007). Neurocognitive, functional, and health outcomes at 5 years of age for children after complex cardiac surgery at 6 weeks of age or younger. Pediatrics, 120, 478486. doi:10.1542/peds.2006-3250CrossRefGoogle ScholarPubMed
Davis, D., Davis, S., Cotman, K., Worley, D., Londrico, D., Harrison, A.M. (2007). Feeding difficulties and growth delay in children with hypoplastic left heart syndrome versus d-Transposition of the great arteries. Pediatric Cardiology, 29, 328333. doi:10.1007/s00246-007-9027-9CrossRefGoogle ScholarPubMed
Donofrio, M.T., Bremer, Y.A., Schieken, R.M., Gennings, C., Morton, L.D., Eidem, B.W., Kleinman, C. (2003). Autoregulation of cerebral blood flow in fetuses with congenital heart disease: The brain sparing effect. Pediatric Cardiology, 24, 436443. doi:10.1007/s00246-002-0404-0CrossRefGoogle ScholarPubMed
Fenson, L., Dale, P.S., Reznick, J.S., Bates, E., Thal, D., Pethick, S.J. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59, 1173.CrossRefGoogle ScholarPubMed
Forbess, J.M., Viconti, K.J., Bellinger, D.C., Jonas, R.A. (2001). Neurodevelopmental outcomes in children after the Fontan operation. Circulation, 104(Suppl I), 127132. doi:10.1161/hc37t1.094816CrossRefGoogle ScholarPubMed
Forbess, J.M., Visconti, K.J., Hancock-Friesen, C., Howe, R.C., Bellinger, D.C., Jonas, R.A. (2002). Neurodevelopmental outcome after congenital heart surgery: Results from an institutional registry. Circulation, 106(Suppl I), 95102. doi:10.1161/01.cir.0000032915.33237.72CrossRefGoogle ScholarPubMed
Goldberg, C.S. (2007). Neurocognitive outcomes of children with functional single ventricle malformations. Pediatric Cardiology, 28, 443447. doi:10.1007/s00246-007-9004-3CrossRefGoogle ScholarPubMed
Goldberg, C.S., Schwartz, E.M., Brunberg, J.A., Mosca, R.S., Bove, E.L., Scork, M.A., Kulik, T.J. (2000). Neurodevelopmental outcome of patients after the Fontan operation: A comparison between children with hypoplastic left heart syndrome and other functional single ventricle lesion. Journal of Pediatrics, 137, 646652. doi:10.1067/mpd.2000.108952CrossRefGoogle Scholar
Hack, M., Taylor, H.G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., Morrow, M. (2005). Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics, 116, 333341. doi:10.1542/ped.2005-0173CrossRefGoogle ScholarPubMed
Hövels-Gürich, H.H., Bauer, S.B., Schnitker, R., Willmes-von Hinckeldey, K., Messmer, B.J., Seghaye, M.-C., Huber, W. (2008). Long-term outcome of speech and language in children after corrective surgery for cyanotic and acyanotic cardiac defects in infancy. European Journal of Paediatric Neurology, 12, 378386. doi:10.1016/j.ejpn.2007.10.004CrossRefGoogle ScholarPubMed
Hövels-Gürich, H.H., Konrad, K., Skorzenski, D., Herpertz-Dahlmann, B., Messmer, B.J., Seghaye, M.-C. (2007). Attentional dysfunction in children after corrective cardiac surgery in infancy. Annuals of Thoracic Surgery, 83, 14251430. doi:10.1016/j.athoracsur.2006.10.069CrossRefGoogle ScholarPubMed
Kaltman, J.R., Di, H., Tian, Z., Rychik, J. (2005). Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound in Obstetrics and Gynecology, 25, 3236. doi:10.1002/uog.1785CrossRefGoogle ScholarPubMed
Kern, J.H., Hinton, V.J., Nereo, N.E., Hayes, C.J., Gersony, W.M. (1998). Early developmental outcome after Norwood procedure for hypoplastic left heart syndrome. Pediatrics, 102, 148152.CrossRefGoogle ScholarPubMed
Licht, D.J., Wang, J., Silvestre, D.W., Nicolson, S.C., Montenegro, L.M., Wernovsky, G., Detre, J.A. (2004). Preoperative cerebral flow is diminished in neonates with severe congenital heart defects. The Journal of Thoracic and Cardiovascular Surgery, 128, 841846. doi:10.1016/j.jtcvs.2004.07.022CrossRefGoogle ScholarPubMed
Limperopoulos, C., Majnemer, A., Shevell, M.I., Roblicek, C., Rosenblatt, B., Tcbervenkov, C., Darwish, H.Z. (2002). Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. The Journal of Pediatrics, 141, 5158. doi:10.1067/mpd.2002.125227CrossRefGoogle ScholarPubMed
Lyytinen, P. (1999). Varhaisen kommunikaation ja kielen kehityksen arviointimenetelmä. Jyväskylä: Yliopistopaino.Google Scholar
Lyytinen, P., Eklund, K., Lyytinen, H. (2005). Language development and literacy skills in late-talking toddlers with and without familial risk for dyslexia. Annals of Dyslexia, 55, 166192. doi:10.1007/s11881-005-0010-yCrossRefGoogle ScholarPubMed
Mahle, W.T., Clancy, R.R., Moss, E.M., Gerdes, M., Jobes, D.R., Wernovsky, G. (2000). Neurodevelopmental outcome and lifestyle assessment in school-aged children with hypoplastic left heart syndrome. Pediatrics, 105, 10821089. doi:10.1542/peds.105.5.1082CrossRefGoogle ScholarPubMed
Mahle, W.T., Tavani, F., Zimmerman, R.A., Nicolson, S.C., Galli, K.K., Gaynor, J.W., Kurth, C.D. (2002). An MRI study of neurological injury before and after congenital heart surgery. Circulation, 106(Suppl I), 109114. doi:10.1161/01.cir.000003208.33237.b1CrossRefGoogle ScholarPubMed
Mahle, W.T., Visconti, K.J., Freier, M.C., Kanne, S.M., Hamilton, W.G., Sharkey, A.M., Jenkins, P.C. (2006). Relationship of surgical approach to neurodevelopmental outcomes of hypoplastic left heart syndrome. Pediatrics, 117, 9097. doi:10.1542/peds.2005-0575CrossRefGoogle ScholarPubMed
Mahle, W.T., Wernovsky, G. (2004). Neurodevelopmental outcomes in hypoplastic left heart syndrome. Pediatric Cardiac Surgery Annual of the Seminars in Thoracic Cardiovascular Surgery, 7, 3947. doi:10.1053/j.pcsu.2004.02.019CrossRefGoogle ScholarPubMed
McCusker, G., Doherty, N.N., Molloy, B., Casey, F., Rooney, N., Mulholland, C., Stewart, M. (2007). Determinants of neuropsychological and behavioral outcomes in early childhood survivors of congenital heart disease. Archives of disease in childhood, 92, 137141. doi:10.1136/adc.2005.092320CrossRefGoogle ScholarPubMed
McGrath, E., Wypij, D., Rappaport, L.A., Newburger, J.W., Bellinger, D.C. (2004). Prediction of IQ and achievement at age 8 years from neurodevelopmental status at age 1 year in children with D-Transposition of the great arteries. Pediatrics, 114, 572576. doi:10.1542/peds.2003-0983-LCrossRefGoogle ScholarPubMed
Miatton, M., De Wolf, D., François, K., Thiery, E., Vingerhoets, G. (2007). Neuropsychological performance in school-aged children with surgically corrected congenital heart disease. The Journal of Pediatrics, 151, 7378. doi:10.1016/j.peds.2007.02.020CrossRefGoogle ScholarPubMed
Norwood, W.I., Lang, P., Hansen, D.D. (1983). Physiologic repair of aortic atresia: Hypoplastic left heart syndrome. The New England Journal of Medicine, 308, 2326.CrossRefGoogle ScholarPubMed
Oates, R.K., Turnbull, J.A., Simpson, J.M., Cartmill, T.B. (1994). Parent and teacher perceptions of child behavior following cardiac surgery. Acta Paediatrica, 83, 13031307. doi:10.1111/j.1651-2227.1994.tb13021.xCrossRefGoogle ScholarPubMed
Perrin, E.C., Stein, R.E., Drotar, D. (1991). Cautions using the Child Behavior Checklist: Observations based on research about children with a chronic illness. Journal of Pediatric Psychology, 16, 411421. doi:10.1093/jpepsy/16.4.411CrossRefGoogle ScholarPubMed
Rogers, B.T., Msall, M.E., Buck, G.M., Lyon, N.R., Norris, M.K., Roland, J.-M.A., Pieroni, D.R. (1995). Neurodevelopmental outcome of infants with hypoplastic left heart syndrome. Pediatrics, 126, 496498.Google ScholarPubMed
Rychik, J. (2005). Hypoplastic left heart syndrome: From in-utero diagnosis to school age. Seminars in Fetal Neonatal Medicine, 10, 553566. doi:10.1016/j.siny.2005.08.006CrossRefGoogle ScholarPubMed
Sarajuuri, A., Jokinen, E., Puosi, R., Eronen, M., Mildh, L., Mattila, I., Lönnqvist, T. (2007). Neurodevelopmental and neuroradiologic outcomes in patients with univentricular heart aged 5 to 7 years: Relate risk factor analysis. The Journal of Thoracic and Cardiovascular Surgery, 133, 15241532. doi:10.1016/j.jtcvs.2006.12.022CrossRefGoogle Scholar
Sarajuuri, A., Jokinen, E., Puosi, R., Mildh, L., Mattila, I., Lano, A., Lönnqvist, T. (2010). Neurodevelopment in children with hypoplastic left heart syndrome. Journal of Pediatrics, 157, 414420. doi:10.1016/j.peds.2010.04.027CrossRefGoogle ScholarPubMed
Sarajuuri, A., Lönnqvist, T., Mildh, L., Rajantie, I., Eronen, M., Mattila, I., Jokinen, E. (2009). Prospective follow-up study of children with univentricular heart: Neurodevelopmental outcome at age 12 months. Journal of Thoracic and Cardiovascular Surgery, 137, 139145. doi:10.1016/j.jtcvs.2008.06.025CrossRefGoogle ScholarPubMed
Tabbutt, S., Nord, A.S., Jarvik, G.P., Bernbaum, J., Wernovsky, G., Gerdes, M., Gaynor, J.W. (2008). Neurodevelopmental outcomes after staged palliation for hypoplastic left heart syndrome. Pediatrics, 121, 476483. doi:10.1542/ds.2007-1282CrossRefGoogle ScholarPubMed
Tweddell, J.S., Hoffman, G.M., Mussatto, K.A., Fedderly, R.T., Berger, S., Jaquiss, R.D., Litwin, B. (2002). Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: Lessons learned from 115 consecutive patients. Circulation, 106, 8289. doi:10.1161/01.cir.0000032878.55215.bdCrossRefGoogle ScholarPubMed
Unesco International Standard Classification of Education (ISCED) 1997.Google Scholar
Uzark, K., Lincoln, A., Lamberti, J.J., Mainwaring, R.D., Spiecer, R.L., Moore, J.W. (1998). Neurodevelopmental outcome of patients after the Fontan repair on functional single ventricle. Pediatrics, 101, 630633.CrossRefGoogle ScholarPubMed
Visconti, K.J., Rimmer, D., Gauvreau, K., del Nido, P., Mayer, J.E., Hagino, I., Pigula, F.A. (2006). Regional low-flow perfusion versus circulatory arrest in neonates: One-year neurodevelopmental outcome. The Annals of the Thoracic Surgery, 82, 22072213. doi:10.1016/j.athoracsur.2006.10.069CrossRefGoogle ScholarPubMed
Wernovsky, G. (2006). Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiology in Young, 16(Suppl I), 92104. doi:10.1017/S1047951105002398CrossRefGoogle Scholar
Wernovsky, G., Stiles, K.M., Gauvreau, K., Gentles, T.L., duPlessis, A.J., Bellinger, D.C., Newburger, J.W. (2000). Cognitive development after the Fontan operation. Circulation, 102, 883889.CrossRefGoogle ScholarPubMed