Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T01:51:36.577Z Has data issue: false hasContentIssue false

Linking Rivermead Post Concussion Symptoms Questionnaire (RPQ) and Sport Concussion Assessment Tool (SCAT) scores with item response theory

Published online by Cambridge University Press:  03 November 2022

Mary U. Simons*
Affiliation:
Department of Psychology, Marquette University, Milwaukee, WI, USA
Lindsay D. Nelson
Affiliation:
Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
Michael A. McCrea
Affiliation:
Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
Steve Balsis
Affiliation:
Department of Psychology, University of Massachusetts Lowell, Lowell, MA, USA
James B. Hoelzle
Affiliation:
Department of Psychology, Marquette University, Milwaukee, WI, USA
Brooke E. Magnus
Affiliation:
Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
*
Corresponding author: Mary Simons, email: [email protected]

Abstract

Objective:

Despite the public health burden of traumatic brain injury (TBI) across broader society, most TBI studies have been isolated to a distinct subpopulation. The TBI research literature is fragmented further because often studies of distinct populations have used different assessment procedures and instruments. Addressing calls to harmonize the literature will require tools to link data collected from different instruments that measure the same construct, such as civilian mild traumatic brain injury (mTBI) and sports concussion symptom inventories.

Method:

We used item response theory (IRT) to link scores from the Rivermead Post Concussion Symptoms Questionnaire (RPQ) and the Sport Concussion Assessment Tool (SCAT) symptom checklist, widely used instruments for assessing civilian and sport-related mTBI symptoms, respectively. The sample included data from n = 397 patients who suffered a sports-related concussion, civilian mTBI, orthopedic injury control, or non-athlete control and completed the SCAT and/or RPQ.

Results:

The results of several analyses supported sufficient unidimensionality to treat the RPQ + SCAT combined item set as measuring a single construct. Fixed-parameter IRT was used to create a cross-walk table that maps RPQ total scores to SCAT symptom severity scores. Linked and observed scores were highly correlated (r = .92). Standard errors of the IRT scores were slightly higher for civilian mTBI patients and orthopedic controls, particularly for RPQ scores linked from the SCAT.

Conclusion:

By linking the RPQ to the SCAT we facilitated efforts to effectively combine samples and harmonize data relating to mTBI.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agtarap, S., Kramer, M. D., Campbell-Sills, L., Yuh, E., Mukherjee, P., Manley, G. T., McCrea, M.A., Dikmen, S., Giacino, J.T., Stein, M.B., Nelson, L. D., & TRACK-TBI Investigators (2021). Invariance of the bifactor structure of mild traumatic brain injury (mTBI) symptoms on the rivermead postconcussion symptoms questionnaire across time, demographic characteristics, and clinical groups: A TRACK-TBI study. Assessment, 28, 16561670.CrossRefGoogle ScholarPubMed
Badhiwala, J. H., Wilson, J. R., & Fehlings, M. G. (2019). Global burden of traumatic brain and spinal cord injury. The Lancet Neurology, 18, 2425.CrossRefGoogle ScholarPubMed
Balsis, S., Benge, J. F., Lowe, D. A., Geraci, L., & Doody, R. S. (2015). How do scores on the ADAS-Cog, MMSE, and CDR-SOB correspond? Clinical Neuropsychology, 29, 10021009.CrossRefGoogle ScholarPubMed
Brett, B. L., Kramer, M. D., McCrea, M. A., Broglio, S. P., McAllister, T. W., Nelson, L. D., & The CARE Consortium Investigators (2020). Bifactor model of the sport concussion assessment tool symptom checklist: Replication and invariance across time in the CARE consortium sample. The American Journal of Sports Medicine, 48, 27832795.CrossRefGoogle ScholarPubMed
Broglio, S. P., Kontos, A. P., Levin, H., Schneider, K., Wilde, E. A., Cantu, R. C., Feddermann-Demot, N., Fuller, G. W., Gagnon, I., Gioia, G. A., Giza, C., Griesbach, G. S., Leddy, J. J., Lipton, M. L., Mayer, A. R., McAllister, T. W., McCrea, M., McKenzie, L. B., Putukian, M., & Sport Related Concussion CDE Working Group. (2018). National institute of neurological disorders and stroke and department of defense sport-related concussion common data elements version 1.0 recommendations. Journal of Neurotrauma, 35, 27762783.CrossRefGoogle ScholarPubMed
Choi, S., Lim, S., Schalet, B., Kaat, A., & Cella, D. (2021). PROsetta: An R package for linking patient-reported outcome measures. Applied Psychological Measurement, 45, 386388. https://doi.org/10.1177/01466216211013106.CrossRefGoogle Scholar
Choi, S. W., Schalet, B., Cook, K. F., & Cella, D. (2014). Establishing a common metric for depressive symptoms: Linking the BDI-II, CES-D, and PHQ-9 to PROMIS depression. Psychological Assessment, 26, 513.10.1037/a0035768CrossRefGoogle ScholarPubMed
Chou, A. C., Torres-Espin, A., Huie, J. R., Krukowski, K., Lee, S., Nolan, A., Guglielmetti, C., Hawkins, B. E., Chaumeil, M. M., Manley, G. T., Beattie, M. S., Bresnahan, J. C., Martone, M. E., Grethe, J. S., Rosi, S., & Ferguson, A. R. (2021). Open data commons for preclinical traumatic brain injury research: Empowering data sharing and big data analytics. bioRxiv. https://doi.org/10.1101/2021.03.15.435178 Google Scholar
Dikmen, S., Machamer, J., & Temkin, N. (2017). Mild traumatic brain injury: Longitudinal study of cognition, functional status, and post-traumatic symptoms. Journal of Neurotrauma, 34, 15241530.10.1089/neu.2016.4618CrossRefGoogle ScholarPubMed
Dorans, N. J. (2007). Linking scores from multiple health outcome instruments. Quality of Life Research, 16, 8594.CrossRefGoogle ScholarPubMed
Dorans, N. J., & Holland, P. W. (2000). Population invariance and the equatability of tests: Basic theory and the linear case. Journal of Educational Measurement, 37, 281306. https://doi.org/10.1111/j.1745-3984.2000.tb01088.x CrossRefGoogle Scholar
Echemendia, R. J., Meeuwisse, W., McCrory, P., Davis, G. A., Putukian, M., Leddy, J., Makdissi, M., Sullivan, S. J., Broglio, S. P., Raftery, M., Schneider, K., Kissick, J., McCrea, M., Dvorak, J., Sills, A. K., Aubry, M., Engebretsen, L., Loosemore, M., Fuller, G., & Herring, S. (2017). The sport concussion assessment tool 5th edition (SCAT5): Background and rationale. British Journal of Sports Medicine, 51, 848850.Google ScholarPubMed
Fayers, P. M., & Hays, R. D. (2014). Should linking replace regression when mapping from profile-based measures to preference-based measures? Value in Health, 17, 261265.CrossRefGoogle ScholarPubMed
Furger, R. E., Nelson, L. D., Lerner, E. B., & McCrea, M. A. (2016). Frequency of factors that complicate the identification of mild traumatic brain injury in level I trauma center patients. Concussion, 1, CNC11.CrossRefGoogle ScholarPubMed
Guzowski, N. S., Hoelzle, J. B., McCrea, M. A., & Nelson, L. D. (2021). Differing associations between measures of somatic symptom reporting, personality, and mild traumatic brain injury (mTBI). The Clinical Neuropsychologist, 118.Google ScholarPubMed
Hicks, R., Giacino, J., Harrison-Felix, C., Manley, G., Valadka, A., & Wilde, E. A. (2013). Progress in developing common data elements for traumatic brain injury research: Version two–the end of the beginning. Journal of Neurotrauma, 30, 18521861.CrossRefGoogle ScholarPubMed
Hopwood, C. J., & Donnellan, M. B. (2010). How should the internal structure of personality inventories be evaluated? Personality and Social Psychology Review, 14, 332346. CrossRefGoogle ScholarPubMed
Iverson, G. L., & Lange, R. T. (2003). Examination of” postconcussion-like” symptoms in a healthy sample. Applied Neuropsychology, 10, 137144.CrossRefGoogle Scholar
James, S. L., & GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. (2019). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology, 18, 5687.CrossRefGoogle Scholar
Kaat, A. J., Blackwell, C. K., Estabrook, R., Burns, J. L., Petitclerc, A., Briggs-Gowan, M. J., Gershon, R. C., Cella, D., Perlman, S. B., & Wakschlag, L. S. (2019). Linking the child behavior checklist (CBCL) with the multidimensional assessment profile of disruptive behavior (MAP-DB): Advancing a dimensional spectrum approach to disruptive behavior. Journal of Child and Family Studies, 28, 343353.CrossRefGoogle ScholarPubMed
King, N. S., Crawford, S., Wenden, F. J., Moss, N. E. G., & Wade, D. T. (1995). The rivermead post concussion symptoms questionnaire: A measure of symptoms commonly experienced after head injury and its reliability. Journal of Neurology, 242, 587592.CrossRefGoogle ScholarPubMed
Lance, C. E., Butts, M. M., & Michels, L. C. (2006). The sources of four commonly reported cutoff criteria: What did they really say? Organizational Research Methods, 9, 202220. https://doi.org/10.1177/1094428105284919 CrossRefGoogle Scholar
Langer, L. K., Comper, P., Ruttan, L., Saverino, C., Alavinia, S. M., Inness, E. L., Kam, A., Lawrence, D. W., Tam, A., Chandra, T., Foster, E., & Bayley, M. T. (2021). Can sport concussion assessment tool (SCAT) symptom scores be converted to rivermead post-concussion symptoms questionnaire (RPQ) scores and vice versa? Findings from the Toronto concussion study. Frontiers in Sports and Active Living, 3, 737402.10.3389/fspor.2021.737402CrossRefGoogle ScholarPubMed
Lu, G., Brazier, J. E., & Ades, A. E. (2013). Mapping from disease-specific to generic health related quality-of-life scales: A common factor model. Value in Health, 16, 177184.CrossRefGoogle Scholar
McCrory, P., Meeuwisse, W., Dvorak, J., Aubry, M., Bailes, J., Broglio, S., Cantu, R. C., Cassidy, D., Echemendia, R. J., Castellani, R. J., Davis, G. A., Ellenbogen, R., Emery, C., Engebretsen, L., Feddermann-Demot, N., Giza, C. C., Guskiewicz, K. M., Herring, S., Iverson, G. L., & Vos, P. E. (2017). Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine, 51, 838847.Google ScholarPubMed
McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., Engebretsen, L., Johnston, K. M., Kutcher, J. S., Raftery, M., Sills, A., Benson, B. W., Davis, G. A., Ellenbogen, R., Guskiewicz, K. M., Herring, S. A., Iverson, G. L., Jordan, B. D., Kissick, J., & Turner, M. (2013). Consensus statement on concussion in sport: The 4th international conference on concussion in sport held in Zurich, November 2012. British Journal of Sports Medicine, 47, 250258. –https://doi.org/10.1136/bjsports-2013–092313 CrossRefGoogle ScholarPubMed
Mikolić, A., van Klaveren, D., Groeniger, J. O., Wiegers, E. J., Lingsma, H. F., Zeldovich, M., von Steinbüchel, N., Maas, A. I. R., Roeters van Lennep, J. E., Polinder, S., & CENTER-TBI Participants and Investigators. (2021). Differences between men and women in treatment and outcome after traumatic brain injury. Journal of Neurotrauma, 38, 235251.CrossRefGoogle ScholarPubMed
Muraki, E., Hombo, C. M., & Lee, Y. W. (2000). Equating and linking of performance assessments. Applied Psychological Measurement, 24, 325337.CrossRefGoogle Scholar
Mutheń, L. K., & Mutheń, B. O. (1998–2015). Mplus user’s guide (7th ed.). Mutheń & Mutheń.Google Scholar
National Institutes of Health. (2018). NIH strategic plan for data science. National Institutes of Health, Office of Data Science Strategy.Google Scholar
Nelson, L. D., Kramer, M. D., Patrick, C. J., & McCrea, M. A. (2018). Modeling the structure of acute sport-related concussion symptoms: A bifactor approach. Journal of the International Neuropsychological Society, 24, 793804.CrossRefGoogle ScholarPubMed
Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., Thissen, D., Revicki, D. A., Weiss, D. J., Hambleton, R. K., Lio, H., Gershon, R., Reise, S. P., Lai, J. S., & Cella, D. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the patient-reported outcomes measurement information system (PROMIS). Medical Care, 45, S22S31.CrossRefGoogle ScholarPubMed
Reise, S. P., Cook, K. F., & Moore, T. M. (2015). Evaluating the impact of multidimensionality on unidimensional item response theory model parameters. In Reise, S. P. & Revicki, D. A. (Eds.), Handbook of item response theory modeling: Applications to typical performance assessment (pp. 1340). Routledge/Taylor & Francis Group.Google Scholar
Revelle, W., & Revelle, M. W. (2015). Package ‘psych’. The comprehensive R Archive Network, 337, 338.Google Scholar
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological Methods, 21, 137.CrossRefGoogle ScholarPubMed
Rosseel, Y. (2012). “lavaan: An R package for structural equation modeling.Journal of Statistical Software, 48, 136. https://doi.org/10.18637/jss.v048.i02.CrossRefGoogle Scholar
Silverberg, N. D., Gardner, A. J., Brubacher, J. R., Panenka, W. J., Li, J. J., & Iverson, G. L. (2015). Systematic review of multivariable prognostic models for mild traumatic brain injury. Journal of Neurotrauma, 32, 517526.10.1089/neu.2014.3600CrossRefGoogle ScholarPubMed
Thomas, M. L. (2011). The value of item response theory in clinical assessment: A review. Assessment, 18, 291307.CrossRefGoogle ScholarPubMed
Thompson, H. J., Vavilala, M. S., & Rivara, F. P. (2015). Common data elements and federal interagency traumatic brain injury research informatics system for TBI research. Annual Review of Nursing Research, 33, 111.CrossRefGoogle ScholarPubMed
Thurmond, V. A., Hicks, R., Gleason, T., Miller, A. C., Szuflita, N., Orman, J., & Schwab, K. (2010). Advancing integrated research in psychological health and traumatic brain injury: Common data elements. Archives of Physical Medicine and Rehabilitation, 91, 16331636.CrossRefGoogle ScholarPubMed
Zahniser, E., Nelson, L. D., Dikmen, S. S., Machamer, J. E., Stein, M. B., Yuh, E.Manley, G. T., Temkin, N. R., & TRACK-TBI Investigators. (2019). The temporal relationship of mental health problems and functional limitations following mTBI: A TRACK-TBI and TED study. Journal of Neurotrauma, 36, 17861793.CrossRefGoogle ScholarPubMed