Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:31:45.614Z Has data issue: false hasContentIssue false

Learning and memory in amnestic mild cognitive impairment: Contribution of working memory

Published online by Cambridge University Press:  22 February 2010

SARAH E. PRICE
Affiliation:
Psychological Science, La Trobe University, Melbourne, Victoria, Australia
GLYNDA J. KINSELLA*
Affiliation:
Psychological Science, La Trobe University, Melbourne, Victoria, Australia Department of Psychology, Caulfield Hospital, Melbourne, Victoria, Australia
BEN ONG
Affiliation:
Psychological Science, La Trobe University, Melbourne, Victoria, Australia
ELIZABETH MULLALY
Affiliation:
Department of Psychology, Caulfield Hospital, Melbourne, Victoria, Australia Cognitive Dementia and Memory Service, Caulfield Hospital, Melbourne, Victoria, Australia
MARGARET PHILLIPS
Affiliation:
Cognitive Dementia and Memory Service, Bundoora Extended Care Centre, Bundoora, Melbourne, Victoria, Australia
LANKI PANGNADASA-FOX
Affiliation:
Department of Clinical Neuropsychology, Austin Health, Melbourne, Victoria, Australia
DIANA PERRE
Affiliation:
Department of Psychology, Sunshine Hospital, Melbourne, Victoria, Australia
ELSDON STOREY
Affiliation:
Cognitive Dementia and Memory Service, Caulfield Hospital, Melbourne, Victoria, Australia Deparment of Neurosciences, Alfred Hospital-Monash University, Melbourne, Victoria, Australia
*
*Correspondence and reprint requests to: Glynda Kinsella, Ph.D., Psychological Science, La Trobe University, Melbourne, Victoria 3086, Australia. E-mail: [email protected]

Abstract

In addition to deficits in delayed recall, recent research suggests that participants with amnestic mild cognitive impairment (aMCI) demonstrate diminished use of strategic encoding strategies during learning. Few studies have explored the cognitive mechanisms underlying this deficit. The aim of this study was to investigate in aMCI whether components of working memory (executive attention – attention set-shifting, dividing and focusing attention; and episodic buffer functions – strategic retrieval and manipulation of information) predict strategic encoding strategies during learning (semantic clustering). Thirty-three participants with aMCI and 33 healthy older adults (HOA) were administered neuropsychological tests assessing word-list learning and working memory. The aMCI group demonstrated significant impairment in acquisition, retrieval of information, and decreased use of semantic clustering strategies. Use of semantic clustering in the aMCI group was not predicted by measures of executive attention or phonemic verbal fluency, but was predicted by semantic verbal fluency performance. In the HOA group, semantic clustering was strongly related to semantic verbal fluency. These findings suggest that in aMCI, diminished strategic encoding strategies during learning (semantic clustering) is selectively related to the strategic function of the episodic buffer, but only when in interaction with the manipulation and retrieval of semantic associations. (JINS, 2010, 16, 342–351.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, S., Mitchell, J., Arnold, R., Nestor, P.J., & Hodges, J.R. (2008). Predicting rapid clinical progression in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 25, 170177.CrossRefGoogle ScholarPubMed
Albert, M.S., Moss, M.B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639.CrossRefGoogle ScholarPubMed
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417423.CrossRefGoogle ScholarPubMed
Baddeley, A.D. (2001). Is working memory still working? American Psychologist, 56, 851864.CrossRefGoogle Scholar
Baddeley, A.D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829839.CrossRefGoogle ScholarPubMed
Baddeley, A., & Hitch, G.J. (1974). Working memory. In Bower, G.A. (Ed.), The psychology of learning and motivation. New York: Academic Press.Google Scholar
Belleville, S., Chertkow, H., & Gauthier, S. (2007). Working memory and control of attention in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychology, 21, 458469.CrossRefGoogle ScholarPubMed
Benton, A.L., & Hamsher, K.D. (1976). Multilingual aphasia examination (Revised edition). Iowa City: University of Iowa.Google Scholar
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239259.CrossRefGoogle ScholarPubMed
Brandt, J., & Benedict, R.H.B. (2001). Hopkins Verbal Learning Test – Revised: Professional manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
Bröder, A., Herwig, A., Teipel, S., & Fast, K. (2008). Different storage and retrieval deficits in normal aging and mild cognitive impairment: A multinomial modeling analysis. Psychology and Aging, 23, 353365.CrossRefGoogle ScholarPubMed
Brooks, B.L., Weaver, L.E., & Scialfa, C.T. (2006). Does impaired executive functioning differentially impact verbal memory measures in older adults with suspected dementia? The Clinical Neuropsychologist, 20, 230242.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
Crowell, T.A., Luis, C.A., Vanderploeg, R.D., Schinka, J.A., & Mullan, M. (2002). Memory patterns and executive functioning in mild cognitive impairment and Alzheimer’s disease. Aging Neuropsychology and Cognition, 9, 288297.CrossRefGoogle Scholar
Daly, E., Zaitchik, D., Copeland, M., Schmahmann, J., Gunther, J., & Albert, M. (2000). Predicting conversion to Alzheimer disease using standardized clinical information. Archives of Neurology, 57, 675680.CrossRefGoogle Scholar
Dannhauser, T.M., Shergill, S.S., Stevens, T., Lee, L., Seal, M., Walker, R.W.H., et al. . (2008). An fMRI study of verbal episodic memory encoding in amnestic mild cognitive impairment. Cortex, 44, 869880.CrossRefGoogle ScholarPubMed
Dannhauser, T.M., Walker, Z., Stevens, T., Lee, L., Seal, M., & Shergill, S.S. (2005). The functional anatomy of divided attention in amnestic mild cognitive impairment. Brain, 128, 14181427.CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (2000). California Verbal Learning Test-II (2nd ed.). New York: The Psychological Corporation.Google Scholar
Delis, D.C., Massman, P.J., Butters, N., Salmon, D.P., Cermak, L.S., & Kramer, J.H. (1991). Profiles of demented and amnesic patients on the California Verbal Learning Test: Implications for the assessment of memory disorders. Psychological Assessment: A Journal of Consulting and Clinical Psychology, 3, 1926.CrossRefGoogle Scholar
Dixon, R.A., Garrett, D.D., Lentz, T.L., MacDonald, S.W.S., Strauss, E., & Hultsch, D.F. (2007). Neurocognitive markers of cognitive impairment: Exploring the roles of speed and inconsistency. Neuropsychology, 21, 381399.CrossRefGoogle ScholarPubMed
Duff, K., Schoenberg, M.R., Scott, J.G., & Adams, R.L. (2005). The relationship between executive functioning and verbal and visual learning and memory. Archives of Clinical Neuropsychology, 20, 111122.CrossRefGoogle ScholarPubMed
Earles, J.L., & Kersten, A.W. (1999). Processing speed and adult age differences in activity memory. Experimental Aging Research, 25, 243253.Google ScholarPubMed
Estévez-González, A., Kulisevsky, J., Boltes, A., Otermín, P., & García-Sánchez, C. (2003). Rey verbal learning test is a useful tool for differential diagnosis in the preclinical phase of Alzheimer’s disease: Comparison with mild cognitive impairment and normal aging. International Journal of Geriatric Psychiatry, 18, 10211028.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Germano, C., Kinsella, G.J., Storey, E., Ong, B., & Ames, D. (2008). The episodic buffer and learning in early Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 30, 627638.CrossRefGoogle Scholar
Greenaway, M.C., Lacritz, L.H., Binegar, D., Weiner, M.F., Lipton, A., & Cullum, C.M. (2006). Patterns of verbal memory performance in mild cognitive impairment, Alzheimer disease, and normal aging. Cognitive and Behavioral Neurology, 19, 7984.CrossRefGoogle ScholarPubMed
Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., et al. . (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of Neurology, 61, 5966.CrossRefGoogle ScholarPubMed
Hampstead, B.M., Sathian, K., Bacon Moore, A., Nalisnick, C., & Stringer, A.Y. (2008). Explicit memory training leads to improved memory for face-name pairs in patients with mild cognitive impairment: Results of a pilot investigation. Journal of the International Neuropsychological Society, 14, 883889.CrossRefGoogle ScholarPubMed
Hertzog, C., Dixon, R.A., Hultsch, D.F., & MacDonald, S.W.S. (2003). Latent change models of adult cognition: Are changes in processing speed and working memory associated with changes in episodic memory? Psychology and Aging, 18, 755769.CrossRefGoogle Scholar
Hodges, J.R., Erzinçlioğlu, S., & Patterson, K. (2006). Evolution of cognitive deficits and conversion to dementia in patients with mild cognitive impairment: A very-long-term follow-up study. Dementia and Geriatric Cognitive Disorders, 21, 380391.CrossRefGoogle ScholarPubMed
Hodges, J.R., & Patterson, K. (1995). Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 33, 441459.CrossRefGoogle ScholarPubMed
Jack, C.R., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., et al. . (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.CrossRefGoogle ScholarPubMed
Jonides, J., Lewis, R.L., Nee, D.E., Lustig, C.A., Berman, M.G., & Moore, K.S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193224.CrossRefGoogle Scholar
Kaplan, E.F., Goodglass, H., & Weintraub, S. (2001). The Boston Naming Test (2nd ed.). Philadelphia: Lippincott, Williams & Wilkins.Google Scholar
Karrasch, M., Sinervä, E., Grönholm, P., Rinne, J., & Laine, M. (2005). CERAD test performances in amnestic mild cognitive impairment and Alzheimer’s disease. Acta Neurologica Scandinavica, 111, 172179.CrossRefGoogle ScholarPubMed
Kinsella, G.J., Mullaly, E., Rand, E., Ong, B., Burton, C., Price, S., et al. . (2009). Early intervention for mild cognitive impairment: A randomized controlled trial. Journal of Neurology, Neuropsychology and Psychiatry, 80, 730736.CrossRefGoogle Scholar
Lovibond, S.H., & Lovibond, P.F. (1995). Manual for the Depression Anxiety Stress Scales. Sydney, NSW: Psychology Foundation Monograph.Google Scholar
Machulda, M.M., Senjem, M.L., Weigand, S.D., Smith, G.E., Ivnik, R.J., Boeve, B.F., et al. . (2009). Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks. Journal of the International Neuropsychological Society, 15, 372382.CrossRefGoogle Scholar
Mack, W.J., Freed, D.M., Williams, B.W., & Henderson, V.W. (1992). Boston Naming Test: Shortened versions for use in Alzheimer’s disease. Journal of Gerontology, 47, 154158.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services taskforce on Alzheimer’s disease. Neurology, 34, 939944.CrossRefGoogle Scholar
Moscovitch, M., Rosenbaum, R.S., Gilboa, A., Addis, D.R., Westmacott, R., Grady, C., et al. . (2005). Functional neuroanatomy of remote episodic, semantic and spatial memory: A unified account based on multiple trace theory. Journal of Anatomy, 207, 3566.CrossRefGoogle Scholar
Murphy, K.J., Rich, J.B., & Troyer, A.K. (2006). Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer’s type dementia. Journal of the International Neuropsychological Society, 12, 570574.CrossRefGoogle ScholarPubMed
Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217227.CrossRefGoogle ScholarPubMed
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology, 26, 11701187.Google ScholarPubMed
Park, D.C., Smith, A.D., Lautenschlager, G., Earles, J.L., Frieske, D., Zwahr, M., et al. . (1996). Mediators of long-term memory performance across the life span. Psychology and Aging, 11, 621637.CrossRefGoogle ScholarPubMed
Perri, R., Carlesimo, G.A., Serra, L., Caltagirone, C., & The Early Diagnosis Group of The Italian Interdisciplinary Network on Alzheimer’s Disease. (2005). Characterization of memory profile in subjects with amnestic mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 27, 10331055.CrossRefGoogle Scholar
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.CrossRefGoogle ScholarPubMed
Petersen, R.C., & Morris, J.C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62, 11601163.CrossRefGoogle Scholar
Rabin, L.A., Barr, W.B., & Burton, L.A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Archives of Neuropsychology, 20, 3365.CrossRefGoogle Scholar
Reitan, R.M., & Wolfson, D. (1985). The Halstead-Reitan Neuropsychological Test Battery. Tucson, AZ: Neuropsychology Press.Google Scholar
Ribeiro, F., Guerreiro, M., & De Mendonça, A. (2007). Verbal learning and memory deficits in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 29, 187197.CrossRefGoogle ScholarPubMed
Robertson, I.H., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1994). The Test of Everyday Attention. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
Rohrer, D., Salmon, D.P., Wixted, J.T., & Paulsen, J.S. (1999). The disparate effects of Alzheimer’s disease and Huntington’s disease on semantic memory. Neuropsychology, 13, 381388.CrossRefGoogle ScholarPubMed
Rozzini, L., Vicini Chilovi, B., Conti, M., Bertoletti, E., Delrio, I., Trabucchi, M., et al. . (2007). Conversion of amnestic mild cognitive impairment to dementia of Alzheimer type is independent to memory deterioration. International Journal of Geriatric Psychiatry, 22, 12171222.CrossRefGoogle Scholar
Salthouse, T.A. (1996). General and specific speed in mediation of adult age differences in memory. Journal of Gerontology, 51, 3042.CrossRefGoogle Scholar
Salthouse, T.A., & Babcock, R.L. (1991). Decomposing adult age differences in working memory. Developmental Psychology, 27, 763776.CrossRefGoogle Scholar
Sarazin, M., Berr, C., De Rotrou, J., Fabrigoule, C., Pasquier, F., Legrain, S., et al. . (2007). Amnestic syndrome of the medial temporal type identifies prodromal AD: A longitudinal study. Neurology, 69, 18591867.CrossRefGoogle ScholarPubMed
Stricker, J.L., Brown, G.G., Wixted, J., Baldo, J.V., & Delis, D.C. (2002). New semantic and serial clustering indices for the California Verbal Learning Test–Second Edition: Background, rationale, and formulae. Journal of the International Neuropsychological Society, 8, 425435.CrossRefGoogle ScholarPubMed
Tabachnick, B.G., & Fidell, L.S. (2001). Using multivariate statistics (4th ed.). Boston: Allyn and Bacon.Google Scholar
Tremont, G., Halpert, S., Javorsky, D.J., & Stern, R.A. (2000). Differential impact of executive dysfunction on verbal list learning and story recall. The Clinical Neurospychologist, 14, 295302.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997a). The Wechsler Adult Intelligence Scale: Third edition technical manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (1997b). The Wechsler Memory Scale: Third edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (2001). Wechsler Test of Adult Reading. San Antonio, TX: The Psychological Corporation.Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., & Fratiglioni, L. (2004). Mild cognitive impairment: Beyond controversies, towards a consensus. Journal of Internal Medicine, 256, 181182.CrossRefGoogle ScholarPubMed
Wylie, S.A., Ridderinkhof, K.R., Eckerle, M.K., & Manning, C.A. (2007). Inefficient response inhibition in individuals with mild cognitive impairment. Neuropsychologia, 45, 14081419.CrossRefGoogle ScholarPubMed
Zhang, Y., Han, B., Verhaeghen, P., & Nilsson, L. (2007). Executive functioning in older adults with mild cognitive impairment: MCI has effects on planning, but not on inhibition. Aging, Neuropsychology, and Cognition, 14, 557570.CrossRefGoogle Scholar