Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:15:05.292Z Has data issue: false hasContentIssue false

Laterality of Damage Influences the Relationship Between Impairment and Arm Use After Stroke

Published online by Cambridge University Press:  31 January 2019

Goldy Yadav
Affiliation:
Center for Cognitive Science, Indian Institute of Technology Gandhinagar, Gujarat, India
Kathleen Y. Haaland
Affiliation:
Department of Psychiatry & Behavioral Sciences and Neurology, University of New Mexico, Albuquerque, New Mexico
Pratik K. Mutha*
Affiliation:
Center for Cognitive Science, Indian Institute of Technology Gandhinagar, Gujarat, India Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
*
*Correspondence and reprint requests to: Pratik K. Mutha, Block 5, Room 316A, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar – 382355, Gujarat, India. E-mail: [email protected]

Abstract

Objectives: To investigate whether the relationship between arm use and motor impairment post-stroke is influenced by the hemisphere of damage. Methods: Right-handed patients with unilateral left hemisphere damage (LHD) or right (RHD) (n=58; 28 LHD, 30 RHD) were recruited for this study. The Arm Motor Ability Test and Functional Impact Assessment were used to derive arm use patterns. The Fugl-Meyer motor assessment scale was used to quantify the level of motor impairment. Results: A significant interaction between patient group and impairment level was observed for contralesional, but not ipsilesional arm use. For lower impairment levels, contralesional (right arm for LHD and left arm for RHD) arm use was greater in LHD than RHD patients. In contrast, for greater levels of impairment, there were no arm use differences between the two patient groups. Conclusions: When motor impairment is significant, it overrides potential effects of stroke laterality on the patterns of arm use. However, a robust influence of hemisphere of damage on the patterns of arm use is evident at lower impairment levels. This may be attributed to previously described arm preference effects. These findings suggest adoption of distinct strategies for rehabilitation following left versus right hemisphere damage in right-handers, at least when the impairment is moderate to low. (JINS, 2019, 25, 470–478)

Type
Regular Research
Copyright
Copyright © The International Neuropsychological Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernspång, B., & Fisher, A.G. (1995). Differences between persons with right or left cerebral vascular accident on the assessment of motor and process skills. Archives of Physical Medicine and Rehabilitation, 76(12), 11441151.CrossRefGoogle ScholarPubMed
Bonilha, L., Hillis, A.E., Hickok, G., Den Ouden, D.B., Rorden, C., & Fridriksson, J. (2017). Temporal lobe networks supporting the comprehension of spoken words. Brain, 140(9), 23702380.CrossRefGoogle ScholarPubMed
Calautti, C., Jones, P.S., Persaud, N., Guincestre, J.Y., Naccarato, M., Warburton, E.A., & Baron, J.C. (2006). Quantification of index tapping regularity after stroke with tri-axial accelerometry. Brain Research Bulletin, 70(1), 17.CrossRefGoogle ScholarPubMed
Chiu, H.-C., & Ada, L. (2016). Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: A systematic review. Journal of Physiotherapy, 62(3), 130137.CrossRefGoogle ScholarPubMed
Cloutman, L., Gottesman, R., Chaudhry, P., Davis, C., Kleinman, J.T., Pawlak, M., … Hillis, A.E. (2009). Where (in the brain) do semantic errors come from? Cortex, 45(5), 641649.CrossRefGoogle Scholar
Coupar, F., Pollock, A., Van Wijck, F., Morris, J., & Langhorne, P. (2010). Simultaneous bilateral training for improving arm function after stroke. Cochrane Database of Systematic Reviews, 4, CD006432.Google Scholar
Damasio, A.R. (1992). Aphasia. New England Journal of Medicine, 326(8), 531539.CrossRefGoogle ScholarPubMed
Dronkers, N.F., Wilkins, D.P., Van Valin, R.D., Redfern, B.B., & Jaeger, J.J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1–2), 145177.CrossRefGoogle ScholarPubMed
Eggert, G.H. (1977). Wernicke’s works on aphasia: A sourcebook and review. Berlin: Mouton de Gruyter.Google Scholar
Fugl-Meyer, A., Jääskö, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 1331.Google ScholarPubMed
Garry, M.I., Kamen, G., & Nordstrom, M.A. (2004). Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. Journal of Neurophysiology, 91(4), 15701578.CrossRefGoogle ScholarPubMed
Gebruers, N., Truijen, S., Engelborghs, S., Nagels, G., Brouns, R., & De Deyn, P.P. (2008). Actigraphic measurement of motor deficits in acute ischemic stroke. Cerebrovascular Diseases, 26(5), 533540.CrossRefGoogle ScholarPubMed
Gladstone, D.J., Danells, C.J., & Black, S.E. (2002). The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabilitation and Neural Repair, 16(3), 232240.CrossRefGoogle ScholarPubMed
Grotta, J.C., Noser, E.A., Ro, T., Boake, C., Levin, H., Aronowski, J., & Schallert, T. (2004). Constraint-induced movement therapy. Stroke, 35(11 Suppl. 1), 26992701.CrossRefGoogle ScholarPubMed
Haaland, K.Y., Mutha, P.K., Rinehart, J.K., Daniels, M., Cushnyr, B., & Adair, J.C. (2012). Relationship between arm usage and instrumental activities of daily living after unilateral stroke. Archives of Physical Medicine and Rehabilitation, 93(11), 19571962.CrossRefGoogle ScholarPubMed
Haaland, K.Y., Prestopnik, J.L., Knight, R.T., & Lee, R.R. (2004). Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain, 127(5), 11451158.CrossRefGoogle ScholarPubMed
Heaton, R.K., Marcotte, T.D., Rivera Mindt, M., Sadek, J., Moore, D.J., Bentley, H., … Wolfson, T. (2004). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10(3), 317331.CrossRefGoogle ScholarPubMed
Hingtgen, B., McGuire, J.R., Wang, M., & Harris, G.F. (2006). An upper extremity kinematic model for evaluation of hemiparetic stroke. Journal of Biomechanics, 39(4), 681688.CrossRefGoogle ScholarPubMed
Hodics, T.M., Nakatsuka, K., Upreti, B., Alex, A., Smith, P.S., & Pezzullo, J.C. (2012). Wolf motor function test for characterizing moderate to severe hemiparesis in stroke patients. Archives of Physical Medicine and Rehabilitation, 93(11), 19631967.CrossRefGoogle ScholarPubMed
Kertesz, A. (1982). Western aphasia battery test manual. Psychological Corp.Google Scholar
Kopp, B., Kunkel, A., Flor, H., Platz, T., Rose, U., Mauritz, K.H., … Taub, E. (1997). The Arm Motor Ability Test: Reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living. Archives of Physical Medicine and Rehabilitation, 78(6), 615620.CrossRefGoogle ScholarPubMed
Kwakkel, G., Veerbeek, J.M., van Wegen, E.E.H., & Wolf, S.L. (2015). Constraint-induced movement therapy after stroke. The Lancet Neurology, 14(2), 224234.CrossRefGoogle ScholarPubMed
Lang, C.E., Wagner, J.M., Edwards, D.F., & Dromerick, A.W. (2007). Upper extremity use in people with hemiparesis in the first few weeks after stroke. Journal of Neurologic Physical Therapy, 31(2), 5663.CrossRefGoogle ScholarPubMed
Lindberg, P.G., Roche, N., Robertson, J., Roby-Brami, A., Bussel, B., & Maier, M.A. (2012). Affected and unaffected quantitative aspects of grip force control in hemiparetic patients after stroke. Brain Research, 1452, 96107.CrossRefGoogle ScholarPubMed
Lum, P.S., Burgar, C.G., Kenney, D.E., & Van Machiel Der Loos, H.F. (1999). Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Transactions on Biomedical Engineering, 46(6), 652662.CrossRefGoogle ScholarPubMed
Mani, S., Mutha, P.K., Przybyla, A., Haaland, K.Y., Good, D.C., & Sainburg, R.L. (2013). Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain, 136(4), 12881303.CrossRefGoogle ScholarPubMed
McCombe Waller, S., & Whitall, J. (2008). Bilateral arm training: Why and who benefits? NeuroRehabilitation, 23(1), 2941.Google ScholarPubMed
Mutha, P.K., Sainburg, R.L., & Haaland, K.Y. (2011a). Left parietal regions are critical for adaptive visuomotor control. Journal of Neuroscience, 31(19), 69726981.CrossRefGoogle Scholar
Mutha, P.K., Sainburg, R.L., & Haaland, K.Y. (2011b). Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain, 134(12), 36473661.CrossRefGoogle Scholar
Nijland, R., Van Wegen, E., Verbunt, J., Van Wijk, R., Van Kordelaar, J., & Kwakkel, G. (2010). A comparison of two validated tests for upper limb function after stroke: The wolf motor function test and the action research arm test. Journal of Rehabilitation Medicine, 42(7), 694696.Google ScholarPubMed
Ninković, M., Weissenbacher, A., Pratschke, J., & Schneeberger, S. (2015). Assessing the outcome of hand and forearm allotransplantation using the action research arm test. American Journal of Physical Medicine and Rehabilitation, 94(3), 211221.CrossRefGoogle ScholarPubMed
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Page, S.J., Levine, P., & Hade, E. (2012). Psychometric properties and administration of the wrist/hand subscales of the Fugl-Meyer assessment in minimally impaired upper extremity hemiparesis in stroke. Archives of Physical Medicine and Rehabilitation, 93(12), 23736.e5.CrossRefGoogle ScholarPubMed
Platz, T., Pinkowski, C., van Wijck, F., Kim, I.H., di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clinical Rehabilitation, 19(4), 404411.CrossRefGoogle ScholarPubMed
Poole, J.L., Sadek, J., & Haaland, K.Y. (2009). Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke. Archives of Physical Medicine and Rehabilitation, 90(10), 18001805.CrossRefGoogle ScholarPubMed
Reiterer, V., Sauter, C., Klosch, G., Lalouschek, W., & Zeitlhofer, J. (2008). Actigraphy--A useful tool for motor activity monitoring in stroke patients. European Neurology, 60(6), 285291.CrossRefGoogle ScholarPubMed
Rinehart, J.K., Singleton, R.D., Adair, J.C., Sadek, J.R., & Haaland, K.Y. (2009). Arm use after left or right hemiparesis is influenced by hand preference. Stroke, 40(2), 545550.CrossRefGoogle ScholarPubMed
Sadek, J.R., Stricker, N., Adair, J.C., & Haaland, K.Y. (2011). Performance-based everyday functioning after stroke: Relationship with IADL questionnaire and neurocognitive performance. Journal of the International Neuropsychological Society, 17(5), 832840.CrossRefGoogle ScholarPubMed
Sainburg, R.L., & Duff, S.V. (2006). Does motor lateralization have implications for stroke rehabilitation? The Journal of Rehabilitation Research and Development, 43(3), 311.CrossRefGoogle ScholarPubMed
Sainburg, R.L., Maenza, C., Winstein, C., & Good, D. (2016). Motor lateralization provides a foundation for predicting and treating non-paretic arm motor deficits in stroke. Advances in Experimental Medicine and Biology, 957, 257272.CrossRefGoogle ScholarPubMed
Schaefer, S.Y., Haaland, K.Y., & Sainburg, R.L. (2009). Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Research, 1298, 7891.CrossRefGoogle ScholarPubMed
Schaefer, S.Y., Mutha, P.K., Haaland, K.Y., & Sainburg, R.L. (2012). Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cerebral Cortex, 22(6), 14071419.CrossRefGoogle ScholarPubMed
See, J., Dodakian, L., Chou, C., Chan, V., McKenzie, A., Reinkensmeyer, D.J., & Cramer, S.C. (2013). A standardized approach to the Fugl-Meyer assessment and its implications for clinical trials. Neurorehabilitation and Neural Repair, 27(8), 732741.CrossRefGoogle ScholarPubMed
Siekierka-Kleiser, E.M., Kleiser, R., Wohlschläger, A.M., Freund, H.-J., & Seitz, R.J. (2006). Quantitative assessment of recovery from motor hemineglect in acute stroke patients. Cerebrovascular Diseases (Basel, Switzerland), 21(5–6), 307314.Google Scholar
Stoykov, M.E., Lewis, G.N., & Corcos, D.M. (2009). Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabilitation and Neural Repair, 23(9), 945953.CrossRefGoogle ScholarPubMed
Tamburini, P., Mazzoli, D., & Stagni, R. (2018). Towards an objective assessment of motor function in sub-acute stroke patients: Relationship between clinical rating scales and instrumental gait stability indexes. Gait and Posture, 59, 5864.CrossRefGoogle ScholarPubMed
Taub, E., Miller, N.E., Novack, T.A., Fleming, W.C., Nepomuceno, C.S., Connell, J.S., & Crago, J.E. (1993). Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 74(4), 347354.Google ScholarPubMed
Thrane, G., Emaus, N., Askim, T., & Anke, A. (2011). Arm use in patients with subacute stroke monitored by accelerometry: Association with motor impairment and influence on self-dependence. Journal of Rehabilitation Medicine, 43(4), 299304.CrossRefGoogle ScholarPubMed
Uswatte, G., Giuliani, C., Winstein, C., Zeringue, A., Hobbs, L., & Wolf, S.L. (2006). Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: Evidence from the extremity constraint-induced therapy evaluation trial. Archives of Physical Medicine and Rehabilitation, 87(10), 13401345.CrossRefGoogle ScholarPubMed
Uswatte, G., Miltner, W.H., Foo, B., Varma, M., Moran, S., & Taub, E. (2000). Objective measurement of functional upper-extremity movement using accelerometer recordings transformed with a threshold filter. Stroke, 31(3), 662667.CrossRefGoogle ScholarPubMed
Vega-Gonzalez, A., Bain, B.J., Dall, P.M., & Granat, M.H. (2007). Continuous monitoring of upper-limb activity in a free-living environment: A validation study. Medical and Biological Engineering and Computing, 45(10), 947956.CrossRefGoogle Scholar
Wang, T., Lin, K., Wu, C., Chung, C., Pei, Y., & Teng, Y. (2011). Validity, Responsiveness, and Clinically Important Difference of the ABILHAND Questionnaire in Patients With Stroke. Archives of Physical Medicine & Rehabilitation, 92(7), 10861091.CrossRefGoogle ScholarPubMed
Winstein, C.J., & Pohl, P.S. (1995). Effects of unilateral brain damage on the control of goal-directed hand movements. Experimental Brain Research, 105(1), 163174.CrossRefGoogle ScholarPubMed