Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T04:20:15.133Z Has data issue: false hasContentIssue false

The influence of executive functions, sensation seeking, and HIV serostatus on the risky sexual practices of substance-dependent individuals

Published online by Cambridge University Press:  11 April 2005

RAUL GONZALEZ
Affiliation:
Department of Psychiatry, University of Illinois, Chicago, Illinois
JASMIN VASSILEVA
Affiliation:
Department of Psychiatry, University of Illinois, Chicago, Illinois
ANTOINE BECHARA
Affiliation:
Department of Neurology, University of Iowa, Iowa City, Iowa
SILVANA GRBESIC
Affiliation:
Department of Psychiatry, University of Illinois, Chicago, Illinois
LISA SWOROWSKI
Affiliation:
Department of Psychiatry, University of Illinois, Chicago, Illinois
RICHARD M. NOVAK
Affiliation:
Department of Medicine, Section of Infectious Diseases, University of Illinois, Chicago, Illinois
GERALD NUNNALLY
Affiliation:
Jesse Brown Veterans Association Healthcare System—West Side Division, Chicago, Illinois
EILEEN M. MARTIN
Affiliation:
Department of Psychiatry, University of Illinois, Chicago, Illinois Jesse Brown Veterans Association Healthcare System—West Side Division, Chicago, Illinois

Abstract

From a public health standpoint, identifying factors that contribute to risky sexual practices among substance-dependent individuals is critical, particularly in the context of HIV infection. This study examines the respective contributions of executive neurocognitive functions, sensation seeking, and HIV serostatus in predicting risky sexual practices among poly-substance users (with a history of dependence primarily for cocaine or cocaine/heroin). HIV+ (n = 109) and HIV− (n = 154) substance-dependent individuals were assessed using three neurocognitive tasks of executive functions: Stroop reaction time, delayed non-matching to sample, and the Iowa Gambling Task. Sensation seeking was assessed using the Sensation Seeking Scale–V. Greater sensation seeking was associated with more risky sexual practices among HIV+ participants, particularly among those who performed best on the Iowa Gambling Task. Our findings indicate that continued risk behavior among HIV+ drug users may be driven by sensation seeking (a personality trait common among drug users); however, the impact of executive functions is less clear. (JINS, 2005, 11, 121–131.)

Type
Research Article
Copyright
© 2005 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avants, S.K., Warburton, L.A., Hawkins, K.A., & Margolin, A. (2000). Continuation of high-risk behavior by HIV-positive drug users. Treatment implications. Journal of Substance Abuse Treatment, 19, 1522.Google Scholar
Bancroft, J., Janssen, E., Strong, D., Carnes, L., Vukadinovic, Z., & Long, J.S. (2003). Sexual risk-taking in gay men: The relevance of sexual arousability, mood, and sensation seeking. Archives of Sexual Behavior, 32, 555572.Google Scholar
Bartok, J.A., Martin, E.M., Pitrak, D.L., Novak, R.M., Pursell, K.J., Mullane, K.M., & Harrow, M. (1997). Working memory deficits in HIV−seropositive drug users. Journal of the International Neuropsychological Society, 3, 451456.Google Scholar
Bartzokis, G., Lu, P.H., Beckson, M., Rapoport, R., Grant, S., Wiseman, E.J., & London, E.D. (2000). Abstinence from cocaine reduces high-risk responses on a gambling task. Neuropsychopharmacology, 22, 102103.Google Scholar
Basso, M.R. & Bornstein, R.A. (2000). Neurobehavioural consequences of substance abuse and HIV infection. Journal of Psychopharmacology, 14, 228237.Google Scholar
Basso, M.R. & Bornstein, R.A. (2003). Effects of past noninjection drug abuse upon executive function and working memory in HIV infection. Journal of Clinical and Experimental Neuropsychology, 25, 893903.Google Scholar
Bechara, A. (2003). Risky business: Emotion, decision-making, and addiction. Journal of Gambling Studies, 19, 2351.Google Scholar
Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55, 3040.Google Scholar
Bechara, A., Damasio, A.R., Damasio, H., & Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715.Google Scholar
Bechara, A., Damasio, H., & Damasio, A.R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295307.Google Scholar
Bechara, A., Damasio, H., Tranel, D., & Anderson, S.W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428437.Google Scholar
Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S.W., & Nathan, P.E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376389.Google Scholar
Bechara, A. & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152162.Google Scholar
Beck, A., Ward, C., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.Google Scholar
Benedict, R.H., Mezhir, J.J., Walsh, K., & Hewitt, R.G. (2000). Impact of human immunodeficiency virus type-1-associated cognitive dysfunction on activities of daily living and quality of life. Archives of Clinical Neuropsychology, 15, 535544.Google Scholar
Bolla, K.I., Eldreth, D.A., London, E.D., Kiehl, K.A., Mouratidis, M., Contoreggi, C., Matochik, J.A., Kurian, V., Cadet, J.L., Kimes, A.S., Funderburk, F.R., & Ernst, M. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage, 19, 10851094.Google Scholar
Cami, J. & Farre, M. (2003). Drug addiction. New England Journal of Medicine, 349, 975986.Google Scholar
Crawford, A.M., Pentz, M.A., Chou, C.P., Li, C., & Dwyer, J.H. (2003). Parallel developmental trajectories of sensation seeking and regular substance use in adolescents. Psychology of Addictive Behaviors, 17, 179192.Google Scholar
Damasio, A.R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London: Biological Sciences, 351, 14131420.Google Scholar
Dellu, F., Piazza, P.V., Mayo, W., Le Moal, M., & Simon, H. (1996). Novelty-seeking in rats—Biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology, 34, 136145.Google Scholar
Ernst, M., Grant, S.J., London, E.D., Contoreggi, C.S., Kimes, A.S., & Spurgeon, L. (2003). Decision making in adolescents with behavior disorders and adults with substance abuse. American Journal of Psychiatry, 160, 3340.Google Scholar
Farinpour, R., Martin, E.M., Seidenberg, M., Pitrak, D.L., Pursell, K.J., Mullane, K.M., Novak, R.M., & Harrow, M. (2000). Verbal working memory in HIV-seropositive drug users. Journal of the International Neuropsychological Society, 6, 548555.Google Scholar
First, M.B., Spitzer, R.L., Gibbon, M., & Williams, J.B. (1996). Structured clinical interview for DSM-IV axis I disorders. New York: Biometrics Research Department.
Franques, P., Auriacombe, M., Piquemal, E., Verger, M., Brisseau-Gimenez, S., Grabot, D., & Tignol, J. (2003). Sensation seeking as a common factor in opioid-dependent subjects and high risk sport practicing subjects: A cross-sectional study. Drug and Alcohol Dependence, 69, 121126.Google Scholar
Gough, H.G. (1994). Theory, development, and interpretation of the CPI socialization scale. Psychological Report, 75, 651700.Google Scholar
Grant, S., Contoreggi, C., & London, E.D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 11801187.Google Scholar
Grober, E. & Sliwinski, M. (1991). Development and validation of a model for estimating premorbid verbal intelligence in the elderly. Journal of Clinical and Experimental Neuropsychology, 13, 933949.Google Scholar
Hardy, D.J. & Hinkin, C.H. (2002). Reaction time slowing in adults with HIV: Results of a meta-analysis using brinley plots. Brain and Cognition, 50, 2534.Google Scholar
Heaton, R.K., Marcotte, T.D., Mindt, M.R., Sadek, J., Moore, D.J., Bentley, H., McCutchan, J.A., Reicks, C., & Grant, I. (2004). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10, 317331.Google Scholar
Heaton, R.K., Velin, R.A., McCutchan, J.A., Gulevich, S.J., Atkinson, J.H., Wallace, M.R., Godfrey, H.P.D., Kirson, D.A., Grant, I., & the HNRC Group. (1994). Neuropsychological impairment in human immunodeficiency virus-infection: Implications for employment. Psychosomatic Medicine, 56, 817.Google Scholar
Hinkin, C.H., Hardy, D.J., Mason, K.I., Castellon, S.A., Durvasula, R.S., Lam, M.N., & Stefaniak, M. (2004). Medication adherence in HIV-infected adults: Effect of patient age, cognitive status, and substance abuse. AIDS, 18, S1925.Google Scholar
Hoyle, R.H., Fejfar, M.C., & Miller, J.D. (2000). Personality and sexual risk taking: A quantitative review. Journal of Personality, 68, 12031231.Google Scholar
Hutchison, K.E., Wood, M.D., & Swift, R. (1999). Personality factors moderate subjective and psychophysiological responses to d-amphetamine in humans. Experimental and Clinical Psychopharmacology, 7, 493501.Google Scholar
Jernigan, T.L., Archibald, S., Hesselink, J.R., Atkinson, J.H., Velin, R.A., McCutchan, J.A., Chandler, J., Grant, I., & the HNRC Group. (1993). Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. Archives of Neurology, 50, 250255.Google Scholar
Jonah, B.A. (1997). Sensation seeking and risky driving: A review and synthesis of the literature. Accident; Analysis and Prevention, 29, 651665.Google Scholar
Kalichman, S.C., Heckman, T., & Kelly, J.A. (1996). Sensation seeking as an explanation for the association between substance use and HIV-related risky sexual behavior. Archives of Sexual Behavior, 25, 141154.Google Scholar
Kalichman, S.C., Johnson, J.R., Adair, V., Rompa, D., Multhauf, K., & Kelly, J.A. (1994). Sexual sensation seeking: Scale development and predicting AIDS-risk behavior among homosexually active men. Journal of Personality Assessment, 62, 385397.Google Scholar
Kelly, J.A. & Kalichman, S.C. (1998). Reinforcement value of unsafe sex as a predictor of condom use and continued HIV/AIDS risk behavior among gay and bisexual men. Health Psychology, 17, 328335.Google Scholar
Limosin, F., Loze, J.Y., Rouillon, F., Ades, J., & Gorwood, P. (2003). Association between dopamine receptor D1 gene DdeI polymorphism and sensation seeking in alcohol-dependent men. Alcoholism Clinical and Experimental Research, 27, 12261228.Google Scholar
Loas, G., Verrier, A., Flament, M.F., Perez-Diaz, F., Corcos, M., Halfon, O., Lang, F., Bizouard, P., Venisse, J.L., Guelfi, J.D., & Jeammet, P. (2001). Factorial structure of the Sensation-Seeking Scale-Form V: Confirmatory factorial analyses in nonclinical and clinical samples. Canadian Journal of Psychiatry, 46, 850855.Google Scholar
Martin, E.M., Novak, R.M., Fendrich, M., Vassileva, J., Gonzalez, R., Grbesic, S., Nunnally, G., & Sworowski, L. (2004). Stroop performance in drug users classified by HIV and hepatitis C virus serostatus. Journal of the International Neuropsychological Society, 10, 298300.Google Scholar
Martin, E.M., Pitrak, D.L., Pursell, K.J., Andersen, B.R., Mullane, K.M., & Novak, R.M. (1998). Information processing and antiretroviral therapy in HIV-1 infection. Journal of the International Neuropsychological Society, 4, 329335.Google Scholar
Martin, E.M., Pitrak, D.L., Rains, N., Grbesic, S., Pursell, K., Nunnally, G., & Bechara, A. (2003). Delayed nonmatch-to-sample performance in HIV-seropositive and HIV-seronegative polydrug abusers. Neuropsychology, 17, 283288.Google Scholar
Martin, E.M., Pitrak, D.L., Weddington, W., Rains, N.A., Nunnally, G., Nixon, H., Grbesic, S., Vassileva, J., & Bechara, A. (2004). Cognitive impulsivity and HIV serostatus in substance dependent males. Journal of the International Neuropsychological Society, 10, 931938.Google Scholar
Martin, E.M., Robertson, L.C., Edelstein, H.E., Jagust, W.J., Sorensen, D.J., San Giovanni, D., & Chirurgi, V.A. (1992). Performance of patients with early HIV-1 infection on the Stroop Task. Journal of Clinical and Experimental Neuropsychology, 14, 857868.Google Scholar
Martin, E.M., Sullivan, T.S., Reed, R.A., Fletcher, T.A., Pitrak, D.L., Weddington, W., & Harrow, M. (2001). Auditory working memory in HIV-1 infection. Journal of the International Neuropsychological Society, 7, 2026.Google Scholar
McLellan, A.T., Luborsky, L., Cacciola, J., Griffith, J., Evans, F., Barr, H.L., & O'Brien, C.P. (1985). New data from the Addiction Severity Index: Reliability and validity in three centers. Journal of Nervous and Mental Disease, 173, 412423.Google Scholar
Metzger, D.S. (1993). The risk assessment battery (RAB): Validity and reliability. Presented in Sixth Annual Meeting of the National Cooperative Vaccine Development Groups for AIDS. Alexandria, VA.
Metzger, D., Woody, G., De Philippis, D., McLellan, A.T., O'Brien, C.P., & Platt, J.J. (1991). Risk factors for needle sharing among methadone-treated patients. American Journal of Psychiatry, 148, 636640.Google Scholar
Metzger, D., Woody, G., & McLellan, A.T. (1992). Twenty-four month seroconversion rates and behavioral change among injection drug users in-and-out-of treatment. NIDA Epidemiologic Trends in Drug Abuse: Proceedings Community Epidemiology Work Group, June, 503506.Google Scholar
Mintzer, M.Z. & Stitzer, M.L. (2002). Cognitive impairment in methadone maintenance patients. Drug and Alcohol Dependence, 67, 4151.Google Scholar
Nath, A., Hauser, K.F., Wojna, V., Booze, R.M., Maragos, W., Prendergast, M., Cass, W., & Turchan, J.T. (2002). Molecular basis for interactions of HIV and drugs of abuse. Journal of Acquired Immune Deficiency Syndrome, 31, S6269.Google Scholar
Navaline, H.A., Snider, E.C., Petro, C.J., Tobin, D., Metzger, D., Alterman, A.I., & Woody, G.E. (1994). Preparations for AIDS vaccine trials. An automated version of the Risk Assessment Battery (RAB): Enhancing the assessment of risk behaviors. AIDS Research and Human Retroviruses, 10, S281283.Google Scholar
Netter, P., Hennig, J., & Roed, I.S. (1996). Serotonin and dopamine as mediators of sensation seeking behavior. Neuropsychobiology, 34, 155165.Google Scholar
Parsons, J.T. & Halkitis, P.N. (2002). Sexual and drug-using practices of HIV-positive men who frequent public and commercial sex environments. AIDS Care, 14, 815826.Google Scholar
Petry, N.M., Bickel, W.K., & Arnett, M. (1998). Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction, 93, 729738.Google Scholar
Reger, M., Welsh, R., Razani, J., Martin, D.J., & Boone, K.B. (2002). A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of the International Neuropsychological Society, 8, 410424.Google Scholar
Rippeth, J.D., Heaton, R.K., Carey, C.L., Marcotte, T.D., Moore, D.J., Gonzalez, R., Wolfson, T., & Grant, I. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10, 114.Google Scholar
Roberti, J.W., Storch, E.A., & Bravata, E. (2003). Further psychometric support for the Sensation Seeking Scale-Form V. Journal of Personality Assessment, 81, 291292.Google Scholar
Rogers, R.D. & Robbins, T.W. (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Current Opinions in Neurobiology, 11, 250257.Google Scholar
Sees, K.L., Delucchi, K.L., Masson, C., Rosen, A., Clark, H.W., Robillard, H., Banys, P., & Hall, S.M. (2000). Methadone maintenance vs 180-day psychosocially enriched detoxification for treatment of opioid dependence: A randomized controlled trial. Journal of the American Medical Association, 283, 13031310.Google Scholar
Spielberger, C.D., Gorsuch, R.L., Lushene, R., Vagg, P.R., & Jacobs, G.A. (1983). Manual for the State—Trait Anxiety Inventory. Palo Alto, California: Consulting Psychologists Press.
Stein, M.A., Sandoval, R., Szumowski, E., Roizen, N., Reinecke, M.A., Blondis, T.A., & Klein, Z. (1995). Psychometric characteristics of the Wender Utah Rating Scale (WURS): Reliability and factor structure for men and women. Psychopharmacology Bulletin, 31, 425433.Google Scholar
Stout, J.C., Ellis, R.J., Jernigan, T.L., Archibald, S.L., Abramson, I., Wolfson, T., McCutchan, J.A., Wallace, M.R., Atkinson, J.H., Grant, I., & the HNRC Group. (1998). Progressive cerebral volume loss in human immunodeficiency virus infection: A longitudinal volumetric magnetic resonance imaging study. Archives of Neurology, 55, 161168.Google Scholar
Stroop, J.R. (1935). Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643662.Google Scholar
Vazquez-Justo, E., Rodriguez Alvarez, M., & Carro Ramos, J. (2003). Neuropsychological performance in HIV/AIDS intravenous drug users. Journal of Clinical and Experimental Neuropsychology, 25, 852865.Google Scholar
Verdejo-Garcia, A., Lopez-Torrecillas, F., Gimenez, C.O., & Perez-Garcia, M. (2004). Clinical implications and methodological challenges in the study of the neuropsychological correlates of cannabis, stimulant, and opioid abuse. Neuropsychology Reviews, 14, 141.Google Scholar
Volkow, N.D., Fowler, J.S., & Wang, G.J. (2002). Role of dopamine in drug reinforcement and addiction in humans: Results from imaging studies. Behavioural Pharmacology, 13, 355366.Google Scholar
Ward, M.F., Wender, P.H., & Reimherr, F.W. (1993). The Wender Utah rating scale: An aid in the retrospective diagnosis of childhood attention deficit hyperactivity disorder. American Journal of Psychiatry, 150, 885888.Google Scholar
Weathers, F.W., Litz, B.T., Huska, J.A., & Keane, T.M. (1994). PCL-C for DSM-IV. Boston, Massachusetts: National Center for PTSD—Behavioral Science Division.
Wilkinson, G.S. (1993). The Wide Range Achievement Test (3rd ed.). Wilmington, Delaware: Wide Range, Inc.
Woody, G.E., Gallop, R., Luborsky, L., Blaine, J., Frank, A., Salloum, I.M., Gastfriend, D., & Crits-Christoph, P. (2003). HIV risk reduction in the National Institute on Drug Abuse Cocaine Collaborative Treatment Study. Journal of Acquired Immune Deficiency Syndrome, 33, 8287.Google Scholar
Zuckerman, M. (1994). Behavioural expressions and biosocial bases of sensation seeking. Cambridge: University Cambridge Press.
Zuckerman, M. (1996). The psychobiological model for impulsive unsocialized sensation seeking: A comparative approach. Neuropsychobiology, 34, 125129.Google Scholar
Zuckerman, M., Kolin, E., Price, I., & Zoob, I. (1964). Development of a sensation-seeking scale. Journal of Consulting and Clinical Psychology, 28, 477482.Google Scholar
Zuckerman, M. & Kuhlman, D.M. (2000). Personality and risk-taking: Common biosocial factors. Journal of Personality, 68, 9991029.Google Scholar