Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T15:20:40.224Z Has data issue: false hasContentIssue false

Functional and anatomical memory indices in patients with or at risk for Alzheimer's disease

Published online by Cambridge University Press:  01 March 2004

NATALIE A. PHILLIPS
Affiliation:
Centre for Research in Human Development/Department of Psychology, Concordia University, Montreal, Quebec, Canada Lady Davis Institute for Medical Research and Department of Clinical Neurosciences, Sir Mortimer B. Davis–Jewish General Hospital, Montreal, Quebec, Canada
HOWARD CHERTKOW
Affiliation:
Lady Davis Institute for Medical Research and Department of Clinical Neurosciences, Sir Mortimer B. Davis–Jewish General Hospital, Montreal, Quebec, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
MANON M. LEBLANC
Affiliation:
Queen's School of Business, Queens University, Kingston, Ontario, Canada
HEATHER PIM
Affiliation:
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
SUSAN MURTHA
Affiliation:
Department of Psychology, York University, Toronto, Ontario, Canada

Abstract

We investigated the sensitivity of the P300 event-related brain potential (ERP) recorded during a memory-demanding task to memory function in subjects with dementia of the Alzheimer's type (DAT), those with mild cognitive impairment (MCI), and normal elderly controls. We also explored the ability of neuropsychological (delayed verbal memory), neuroanatomical (MRI-based hippocampal volume), and electrophysiological (memory search P300 amplitude) memory measures to distinguish between the three subject groups using discriminant function analyses. Fourteen patients with DAT, 16 with MCI, and 15 age- and education-matched controls were tested. P300 amplitude was reduced in DAT subjects at all levels of memory load; however, it did not differ between MCI and control subjects. Delayed verbal memory performance best discriminated DAT from MCI and control subjects, while delayed verbal memory and hippocampal volume best discriminated MCI subjects from controls. These results support the utility of neuropsychological and neuroanatomical measures in diagnosing dementia and do not support the notion that P300 amplitude is sensitive to mild memory dysfunction when measured using the current task. (JINS, 2004, 10, 200–210.)

Type
Research Article
Copyright
© 2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, N. & Collins, G.I. (1978). Late components of the visual evoked potential to search in short-term memory. Electroencephalography and Clinical Neurophysiology, 44, 147156.Google Scholar
Albert, M.S., Moss, M.B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639.Google Scholar
Benton, A.L. & Hamsher, K.S. (1989). Multilingual Aphasia Examination. Iowa City, IA: AJA Associates.
Blackwood, D.H.R., St. Clair, D.M., Blackburn, I.M., & Tyrer, G.M.B. (1987). Cognitive brain potentials and psychological deficits in Alzheimer's dementia and Korsakoff's amnesic syndrome. Psychological Medicine, 17, 349358.Google Scholar
Boaz, T.L. & Denny, D.R. (1993). Speed of scanning in primary memory in persons with dementia of the Alzheimer type. Psychology and Aging, 8, 294300.Google Scholar
Brandt, J. & Rich, J.B. (1995). Memory disorders in the dementias. In A.D. Baddeley, B.A. Wilson, & F.N. Watts (Eds.), Handbook of memory disorders (pp. 243270). Chicester, UK: John Wiley and Sons.
Brown, W.S., Marsh, J.T., & LaRue, A. (1983). Exponential electrophysiological aging: P300 latency. Electroencephalography and Clinical Neurophysiology, 55, 277285.Google Scholar
Coles, M.G.H. & Rugg, M.D. (1995). Event-related brain potentials: An introduction. In M.D. Rugg & M.G.H. Coles (Eds.), Electrophysiology of mind: Event-related brain potentials and cognition (pp. 139). Oxford, UK: Oxford University Press.
De Leon, M.J., Golomb, J., George, A.E., Convit, A., Tarshish, C.Y., McRae, T., De Santi, S., Smith, G., Ferris, S.H., Noz, M., & Rusinek, H. (1993). The radiologic prediction of Alzheimer disease: The atrophic hippocampal formation. American Journal of Neuroradiology, 14, 897906.Google Scholar
deToledo-Morrell, L., Evers, S., Hoeppner, T., Morrell, F., Garron, D., & Fox, J. (1991). A ‘stress’ test for memory dysfunction: Electrophysiologic manifestations of early Alzheimer's disease. Archives of Neurology, 48, 605609.Google Scholar
Dickerson, B.C., Goncharova, I., Sullivan, M.P., Forchetti, C., Wilson, R.S., Bennett, D.A., Beckett, L.A., & deToledo-Morrell, L. (2001). MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiology of Aging, 22, 747754.Google Scholar
Donchin, E. (1981). Surprise! … Surprise? Psychophysiology, 18, 493513.Google Scholar
Erkinjuntti, T., Lee, D.H., Gao, F., Steenhuis, R., Eliasziw, M., Fry, R., Merskey, H., & Hachinski, V.C. (1993). Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer's disease. Archives of Neurology, 50, 305310.Google Scholar
Flicker, C., Ferris, S.H., & Reisberg, B. (1991). Mild cognitive impairment in the elderly: Predictors of dementia. Neurology, 41, 10061009.Google Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.Google Scholar
Ford, J., Roth, W.T., Mohs, R., Hopkins, W.D., & Kopell, B.S. (1979). Event-related potentials recorded from young and old adults during a memory retrieval task. Electroencephalography and Clinical Neurophysiology, 47, 450459.Google Scholar
Goodin, D.S., Squires, K.C., & Starr, A. (1978). Long latency event-related components of auditory evoked potential in dementia. Brain, 101, 635648.Google Scholar
Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potentials in audiotry and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106, 156164.Google Scholar
Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., & Martin, R.L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566572.Google Scholar
Jack, C.R., Jr., Petersen, R.C., O'Brien, P.C., & Tangalos, E.G. (1992). MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease. Neurology, 42, 183188.Google Scholar
Jack, C.R., Jr., Petersen, R.C., Xu, Y.C., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., & Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.Google Scholar
Jasper, H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371375.Google Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test (2nd ed.). Philadelphia: Lea & Fibiger.
Killiany, R.J., Hyman, B.T., Gomez-Isla, T., Moss, M.B., Kikinis, R., Jolesz, F., Tanzi, R., Jones, K., & Albert, M.S. (2002). MRI measures of entorhinal cortex vs. hippocampus in preclinical AD. Neurology, 58, 11881196.Google Scholar
Killiany, R.J., Moss, M.B., Albert, M.S., Sandor, T., Tieman, J., & Jolesz, F. (1993). Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease. Archives of Neurology, 50, 949954.Google Scholar
Kraiuhin, C., Gordon, E., Coyle, S., Sara, G., Rennie, C., Howson, A., Landau, P., & Meares, R. (1990). Normal latency of the P300 event-related potential in mild-to-moderate Alzheimer's disease and depression. Biological Psychiatry, 28, 372386.Google Scholar
Laakso, M.P., Hallikainen, M., Hänninen, T., Partanen, K., & Soininen, H. (2000). Diagnosis of Alzheimer's disease: MRI of the hippocampus vs. delayed recall. Neuropsychologia, 38, 579584.Google Scholar
MacDonald, J.D., Avis, D., & Evans, A.C. (1994). Multiple surface identification and matching in magnetic resonance images. Proceedings of the Society of Visual and Biomedical Computing, 160169.
McCarthy, G., Wood, C.C., Williamson, P.D., & Spencer, D.D. (1989). Task-dependent field potentials in human hippocampal formation. Journal of Neuroscience, 9, 42534268.Google Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34, 939944.Google Scholar
Milner, B. (1978). Clues to the cerebral organization of memory. In P.A. Buser & A. Rougeul-Buser (Eds.), Cerebral correlates of conscious experience. INSERM Symposium No. 6 (pp. 139153). Amsterdam: Elsevier/North Holland.
Morris, J.C., McKeel, D.W., & Price, J.L. (1988). Very mild senile dementia of the Alzheimer type. Neurology, 38, 227233.Google Scholar
Murtha, S., Chertkow, H., Bourgouin, P., McKelvey, R., & Bergman, H. (1994, March). MRI hippocampal volumetric shrinkage in memory-impaired elderly without dementia. Proceedings of the 4th Annual Rotman Institute Conference, Toronto, Ontario, Canada.
Neelin, P., Crossman, J., Hawks, D.J., Ma, Y., & Evans, A. (1993). Validation of a MRI-PET landmark registration method. Computerized Medical Imaging and Graphics, 17, 351356.Google Scholar
O'Connor, D.W. (1994). Mild dementia: A clinical perspective. In F.A. Huppert, C. Brayne, & D.W. O'Connor (Eds.), Dementia and normal aging (pp. 91117). Cambridge, UK: Cambridge University Press.
Olichney, J.M., Morris, S.K., Ochoa, C., Salmon, D.P., Thal, L.J., Kutas, M., & Iragui, V.J. (2002). Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 73, 377384.Google Scholar
Patterson, J.V., Michalewski, H.J., & Starr, A. (1988). Latency variability of the components of auditory event-related potentials to infrequent stimuli in aging, Alzheimer-type dementia, and depression. Electroencephalography and Clinical Neurophysiology, 71, 450460.Google Scholar
Perry, R.J. & Hodges, J.R. (1999). Attention and executive deficits in Alzheimer's disease: A critical review. Brain, 122, 383404.Google Scholar
Petersen, R.C., Smith, G.E., Ivnik, R.J., Kokmen, E., & Tangalos, E.G. (1994). Memory function in very early Alzheimer's disease. Neurology, 44, 867872.Google Scholar
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokem, E. (1999). Mild cognitive impairment. Clinical characterization and outcome. Archives of Neurology, 56, 303308.Google Scholar
Phillips, N.A. & Hooper, R. (1997). Short-term memory for visuospatial and verbal material in the elderly: An ERP study. Psychophysiology, 34, S71.Google Scholar
Picton, T.W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456479.Google Scholar
Polich, J., Ladish, C., & Bloom, F.E. (1990). P300 assessment of early Alzheimer's disease. Electroencephalography and Clinical Neurophysiology, 77, 179189.Google Scholar
Polich, J. & Squire, L.R. (1993). P300 from amnesic patients with bilateral hippocampal lesions. Electroencephalography and Clinical Neurophysiology, 86, 408417.Google Scholar
Pratt, H., Michalewski, H.J., Barrett, G., & Starr, A. (1989). Brain potentials in a memory-scanning task. I. Modality and task effects on potentials to probes. Electroencephalography and Clinical Neurophysiology, 72, 407421.Google Scholar
Puce, A., Kalnins, R.M., Berkovic, S.F., Donnan, G., & Bladin, P.F. (1989). Limbic P3 potential, seizure localization, and surgical pathology in temporal lobe epilepsy. Annals of Neurology, 26, 377385.Google Scholar
Rubin, E.H., Morris, J.C., Grant, E.A., & Vendegna, T. (1989). Very mild senile dementia of the Alzheimer type. I. Clinical assessment. Archives of Neurology, 46, 379382.Google Scholar
Rugg, M.D., Pickles, C.D., Potter, D.D., & Roberts, R.C. (1991). Normal P300 following extensive damage to the left medial temporal lobe. Journal of Neurology, Neurosurgery, and Psychiatry, 54, 217222.Google Scholar
Semlitsch, H.V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifact applied to the P300 ERP. Psychophysiology, 23, 695703.Google Scholar
Soininen, H.S., Partanen, K., Pitänen, A., Vainio, P., Hänninen, T., Hallikainen, M., Koivisto, K., & Riekkinen, P.J., Sr. (1994). Volumetric MRI analysis of the amygdala and hippocampus in subjects with age-associated memory impairment: Correlation to visual and verbal memory. Neurology, 44, 16601668.Google Scholar
Spreen, O. & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York: Oxford University Press.
Starr, A. & Barrett, G. (1987). Disordered auditory short-term memory in man and event-related potentials. Brain, 110, 935959.Google Scholar
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652654.Google Scholar
Sternberg, S. (1975). Memory scanning: New findings and current controversies. Quarterly Journal of Experimental Psychology, 27, 132.Google Scholar
Storandt, M., Botwinick, J., Danziger, W.L., Berg, L., & Hughes, C.P. (1984). Psychometric differentiation of mild senile dementia of the Alzheimer type. Archives of Neurology, 41, 497499.Google Scholar
Swanwick, G.R.J., Rowan, M.J., Coen, R.F., Lawlor, B.A., Walsh, J.B., & Coakley, D. (1997). Electrophysiologic responses to varying mnemonic demand: A “stress test” is not diagnostic in very mild Alzheimer's disease. Biological Psychiatry, 42, 10731075.Google Scholar
Tierney, M.C., Fisher, R.H., Lewis, A.J., Zorzitto, M.L., Snow, W.G., Reid, D.W., & Nieuwstraten, P. (1988). The NINCDS-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer's disease: A clinicopathologic study of 57 cases. Neurology, 38, 359364.Google Scholar
Tierney, M.C., Snow, W.G., Reid, D.W., Zorzitto, M.L., & Fisher, R.H. (1987). Psychometric differentiation of dementia. Replication and extension of the findings of Storandt and coworkers. Archives of Neurology, 44, 720722.Google Scholar
Tierney, M.C., Szalai, J.P., Snow, W.G., Fisher, R.H., Nores, A., Nadon, G., Dunn, E., & St. George-Hyslop, P.H. (1996). Prediction of probable Alzheimer's disease in memory-impaired patients: A prospective longitudinal study. Neurology, 46, 661665.Google Scholar
Tuokko, H., Vernon-Wilkinson, R., Weir, J., & Beattie, B.L. (1991). Cued recall and early identification of dementia. Journal of Clinical and Experimental Neuropsychology, 13, 871879.Google Scholar
Visser, P.J., Scheltens, P., Verhey, F.R., Schmand, B., Launer, L.J., Jolles, J., & Jonker, C. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246, 477485.Google Scholar
Watson, C., Andermann, F., Gloor, P., Jones-Gotman, M., Peters, T., Evans, A., Olivier, A., Melanson, D., & Leroux, G. (1992). Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology, 42, 17431750.Google Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale–Revised manual. New York: The Psychological Corporation.
Wechsler, D. (1987). Wechsler Memory Scale–Revised manual. New York: The Psychological Corporation.