Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:22:32.679Z Has data issue: false hasContentIssue false

Executive Dysfunction 25 Years after Treatment with Cranial Radiotherapy for Pediatric Lymphoid Malignancies

Published online by Cambridge University Press:  22 September 2015

Ilse Schuitema*
Affiliation:
Department of Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands
Leo de Sonneville
Affiliation:
Department of Clinical Child and Adolescent Studies, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands Leiden Institute for Brain and Cognition, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
Gertjan Kaspers
Affiliation:
Department of Pediatrics, Division of Pediatric Hematology/Oncology, VU University Medical Center, Amsterdam, The Netherlands
Helena van der Pal
Affiliation:
Department of Pediatrics, Division of Pediatric Oncology, Academic Medical Center, Amsterdam, The Netherlands Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
Anne Uyttebroeck
Affiliation:
Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium
Cor van den Bos
Affiliation:
Department of Pediatrics, Division of Pediatric Oncology, Academic Medical Center, Amsterdam, The Netherlands
Anjo Veerman
Affiliation:
Department of Pediatrics, Division of Pediatric Hematology/Oncology, VU University Medical Center, Amsterdam, The Netherlands
*
Correspondence and reprint requests to: Ilse Schuitema, Department of Health, Medical and Neuropsychology, Faculty of Social Sciences, Leiden University, Wassenaarseweg 52, P.O. Box 9555, 2300 RB, Leiden, The Netherlands. E-mail: [email protected]

Abstract

The first cohorts to survive childhood lymphoid malignancies treated with cranial irradiation are now aging into adulthood, and concerns are growing about the development of radiotherapy-induced cognitive deficits in the aging brain. These deficits are hypothesized to increase over time. Their impact on daily functioning of older survivors, and the accompanying need for interventions, should be anticipated. By describing a detailed profile of executive function deficits and their associations with age, specific targets for neuropsychological intervention can be identified. Fifty survivors of childhood lymphoid malignancies and 58 related controls were assessed with the Amsterdam Neuropsychological Tasks program. The survivors were on average 31.1 (4.9) years old, treated with 22.5 (6.8) Gy cranial irradiation, and examined on average 25.5 (3.1) years after diagnosis. The survivors showed significantly decreased response speed, irrespective of the task at hand. Furthermore, we found deficits in working memory capacity, inhibition, cognitive flexibility, executive visuomotor control, attentional fluctuations, and sustained attention. Older age was associated with poorer performance on executive visuomotor control and inhibition. On executive visuomotor control, 50% of female survivors performed more than 1.5 SD below average, versus 15.4% of male survivors. The combination of visuospatial working memory problems and decreasing executive visuomotor control could result in difficulty with learning new motor skills at older ages, like walking with a cane. Deterioration of executive control and inhibition may result in decreased behavioral and emotional regulation in aging survivors. Especially the deficiency in executive visuomotor control in female survivors should be considered for (prophylactic) intervention. (JINS, 2015, 21, 657–669)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anguera, J.A. (2008). Contributions of spatial working memory to visuomotor adaptation (PhD Dissertation). The University of Michigan, Michigan.Google Scholar
Armstrong, F.D. (2013). Implications of 25-year follow-up of white matter integrity and neurocognitive function of childhood leukemia survivors: A wake-up call. Journal of Clinical Oncology, 31(27), 33093311. doi:10.1200/jco.2013.50.8879 CrossRefGoogle ScholarPubMed
Armstrong, G.T., Liu, Q., Yasui, Y., Huang, S., Ness, K.K., Leisenring, W., & Packer, R.J. (2009). Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 101(13), 946958. doi:10.1093/jnci/djp148 CrossRefGoogle ScholarPubMed
Armstrong, G.T., Reddick, W.E., Petersen, R.C., Santucci, A., Zhang, N., Srivastava, D., & Krull, K.R. (2013). Evaluation of memory impairment in aging adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiotherapy. Journal of the National Cancer Institute, 105(12), 899907. doi:10.1093/jnci/djt089 CrossRefGoogle ScholarPubMed
Buizer, A.I., de Sonneville, L.M., van den Heuvel-Eibrink, M.M., & Veerman, A.J. (2005). Chemotherapy and attentional dysfunction in survivors of childhood acute lymphoblastic leukemia: Effect of treatment intensity. Pediatric Blood & Cancer, 45(3), 281290. doi:10.1002/pbc.20397 CrossRefGoogle ScholarPubMed
Campbell, L.K., Scaduto, M., Sharp, W., Dufton, L., Van Slyke, D., Whitlock, J.A., & Compas, B. (2007). A meta-analysis of the neurocognitive sequelae of treatment for childhood acute lymphocytic leukemia. Pediatric Blood & Cancer, 49(1), 6573. doi:10.1002/pbc.20860 CrossRefGoogle ScholarPubMed
Cicerone, K.D., Langenbahn, D.M., Braden, C., Malec, J.F., Kalmar, K., Fraas, M., & Ashman, T. (2011). Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Archives of Physical Medicine and Rehabilitation, 92(4), 519530. doi:10.1016/j.apmr.2010.11.015 CrossRefGoogle ScholarPubMed
Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 33163321. doi:10.1073/pnas.0400266101 CrossRefGoogle ScholarPubMed
Cole, P.D., & Kamen, B.A. (2006). Delayed neurotoxicity associated with therapy for children with acute lymphoblastic leukemia. Mental Retardation and Developmental Disabilities Research Reviews, 12(3), 174183. doi:10.1002/mrdd.20113 CrossRefGoogle ScholarPubMed
Daams, M., Schuitema, I., van Dijk, B.W., van Dulmen-den Broeder, E., Veerman, A.J., van den Bos, C., & de Sonneville, L.M. (2012). Long-term effects of cranial irradiation and intrathecal chemotherapy in treatment of childhood leukemia: A MEG study of power spectrum and correlated cognitive dysfunction. BMC Neurology, 12, 84. doi:10.1186/1471-2377-12-84 CrossRefGoogle ScholarPubMed
De Sonneville, L.M., Boringa, J.B., Reuling, I.E., Lazeron, R.H., Ader, H.J., & Polman, C.H. (2002). Information processing characteristics in subtypes of multiple sclerosis. Neuropsychologia, 40(11), 17511765.CrossRefGoogle ScholarPubMed
De Sonneville, L.M.J. (1999). Amsterdam Neuropsychological Tasks: A computer-aided assessment program (Vol. 6). Lisse: Swets & Zeitlinger.Google Scholar
De Sonneville, L.M.J. (2014). Handbook Amsterdam Neuropsychological Tasks. Amsterdam: Boom testuitgevers.Google Scholar
Edelstein, K., D’Agostino, N., Bernstein, L.J., Nathan, P.C., Greenberg, M.L., Hodgson, D.C., & Spiegler, B.J. (2011). Long-term neurocognitive outcomes in young adult survivors of childhood acute lymphoblastic leukemia. Journal of Pediatric Hematology/Oncology, 33(6), 450458. doi:10.1097/MPH.0b013e31820d86f2 CrossRefGoogle ScholarPubMed
Grafman, J., Rao, S., Bernardin, L., & Leo, G.J. (1991). Automatic memory processes inpatients with multiple sclerosis. Archives of Neurology, 48, 10721075.CrossRefGoogle Scholar
Guiney, H., & Machado, L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20(1), 7386. doi:10.3758/s13423-012-0345-4 CrossRefGoogle ScholarPubMed
Gunther, T., Herpertz-Dahlmann, B., & Konrad, K. (2005). [Reliability of attention and verbal memory tests with normal children and adolescents--clinical implications]. Zeitschrift fur Kinder und Jugendpsychiatrie Psychotherapie, 33(3), 169179.Google ScholarPubMed
Harila, M.J., Winqvist, S., Lanning, M., Bloigu, R., & Harila-Saari, A.H. (2009). Progressive neurocognitive impairment in young adult survivors of childhood acute lymphoblastic leukemia. Pediatric Blood & Cancer, 53(2), 156161. doi:10.1002/pbc.21992 CrossRefGoogle ScholarPubMed
Harpin, V.A. (2005). The effect of ADHD on the life of an individual, their family, and community from preschool to adult life. Archives of Disease in Childhood, 90(Suppl. 1), i2i7. doi:10.1136/adc.2004.059006 CrossRefGoogle ScholarPubMed
Hasher, L., & Sacks, R.T. (1987). Automatic and effortful processes in memory. Journal of Experimental Psychology (General), 108, 356388.CrossRefGoogle Scholar
Hayes, S.M., Hayes, J.P., Cadden, M., & Verfaellie, M. (2013). A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Frontiers in Aging Neuroscience, 5, 31. doi:10.3389/fnagi.2013.00031 CrossRefGoogle ScholarPubMed
Hijiya, N., Hudson, M.M., Lensing, S., Zacher, M., Onciu, M., Behm, F.G., & Pui, C.H. (2007). Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. Journal of the American Medical Association, 297(11), 12071215. doi:10.1001/jama.297.11.1207 CrossRefGoogle ScholarPubMed
Huijbregts, S., Swaab, H., & de Sonneville, L. (2010). Cognitive and motor control in neurofibromatosis type I: Influence of maturation and hyperactivity-inattention. Developmental Neuropsychology, 35(6), 737751. doi:10.1080/87565641.2010.508670 CrossRefGoogle ScholarPubMed
Huijbregts, S.C.J., De Sonneville, L.M.J., Van Spronsen, F.J., Licht, R., & Sergeant, J.A. (2002). The neuropsychological profile of early-and continuously treated phenylketonuria: Selective attention, vigilance, and ‘maintenance’ versus ‘manipulation’ - functions of working memory. Neuroscience & Biobehavioral Reviews, 26, 697712.CrossRefGoogle ScholarPubMed
Jain, R., Robertson, P.L., Gandhi, D., Gujar, S.K., Muraszko, K.M., & Gebarski, S. (2005). Radiation-induced cavernomas of the brain. AJNR: American Journal of Neuroradiology, 26(5), 11581162.Google ScholarPubMed
Kennedy, M.R., Coelho, C., Turkstra, L., Ylvisaker, M., Moore Sohlberg, M., Yorkston, K., & Kan, P.F. (2008). Intervention for executive functions after traumatic brain injury: A systematic review, meta-analysis and clinical recommendations. Neuropsychological Rehabilitation, 18(3), 257299. doi:10.1080/09602010701748644 CrossRefGoogle ScholarPubMed
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317324. doi:10.1016/j.tics.2010.05.002 CrossRefGoogle ScholarPubMed
Klingberg, T., Fernell, E., Olesen, P.J., Johnson, M., Gustafsson, P., Dahlstrom, K., & Westerberg, H. (2005). Computerized training of working memory in children with ADHD--a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177186. doi:10.1097/00004583-200502000-00010 CrossRefGoogle ScholarPubMed
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781791. doi:10.1076/jcen.24.6.781.8395 CrossRefGoogle ScholarPubMed
Krull, K.R., Brinkman, T.M., Li, C., Armstrong, G.T., Ness, K.K., Srivastava, D.K., & Hudson, M.M. (2013). Neurocognitive outcomes decades after treatment for childhood acute lymphoblastic leukemia: A report from the St. Jude lifetime cohort study. Journal of Clinical Oncology, 31(35), 44074415. doi:10.1200/jco.2012.48.2315 CrossRefGoogle ScholarPubMed
Krupp, L.B., Elkin, L.E., Strober, L., Scherl, W., & Cianciulli, C. (2001). Explicit and implicit verbal memory in multiple sclerosis: Implications for treatment. Journal of the International Neuropsychological Society, 7(2), 196.Google Scholar
Mennes, M., Stiers, P., Vandenbussche, E., Vercruysse, G., Uyttebroeck, A., De Meyer, G., &Van Cool, S.W. (2005). Attention and information processing in survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only. Pediatric Blood & Cancer, 44(5), 478486.CrossRefGoogle ScholarPubMed
Mulder, G. (1986). The concept and measurement of mental effort. In G.A. Hockey & M.G. Coles (Eds.), Energetics and human information processing (pp. 175198). Dordrecht: Martinus Nijhoff.CrossRefGoogle Scholar
Padilla, C., Perez, L., & Andres, P. (2014). Chronic exercise keeps working memory and inhibitory capacities fit. Frontiers in Behavioral Neuroscience, 8, 49. doi:10.3389/fnbeh.2014.00049 CrossRefGoogle ScholarPubMed
Pui, C.H., Carroll, W.L., Meshinchi, S., & Arceci, R.J. (2011). Biology, risk stratification, and therapy of pediatric acute leukemias: An update. Journal of Clinical Oncology, 29(5), 551565. doi:10.1200/jco.2010.30.7405 CrossRefGoogle ScholarPubMed
Riehm, H., Gadner, H., Henze, G., Kornhuber, B., Lampert, F., Niethammer, D., & Schellong, G. (1990). Results and significance of six randomized trials in four consecutive ALL-BFM studies. Haematology and Blood Transfusion, 33, 439450.CrossRefGoogle ScholarPubMed
Schuitema, I., Deprez, S., Van Hecke, W., Daams, M., Uyttebroeck, A., Sunaert, S., & de Sonneville, L.M. (2013). Accelerated aging, decreased white matter integrity, and associated neuropsychological dysfunction 25 years after pediatric lymphoid malignancies. Journal of Clinical Oncology, 31(27), 33783388. doi:10.1200/jco.2012.46.7050 CrossRefGoogle ScholarPubMed
Smith, P.J., Blumenthal, J.A., Hoffman, B.M., Cooper, H., Strauman, T.A., Welsh-Bohmer, K., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239252. doi:10.1097/PSY.0b013e3181d14633 CrossRefGoogle ScholarPubMed
Spiegler, B.J., Kennedy, K., Maze, R., Greenberg, M.L., Weitzman, S., Hitzler, J.K., & Nathan, P.C. (2006). Comparison of long-term neurocognitive outcomes in young children with acute lymphoblastic leukemia treated with cranial radiation or high-dose or very high-dose intravenous methotrexate. Journal of Clinical Oncology, 24(24), 38583864. doi:10.1200/jco.2006.05.9055 CrossRefGoogle ScholarPubMed
Spikman, J.M., Boelen, D.H., Lamberts, K.F., Brouwer, W.H., & Fasotti, L. (2010). Effects of a multifaceted treatment program for executive dysfunction after acquired brain injury on indications of executive functioning in daily life. Journal of the International Neuropsychological Society, 16(1), 118129. doi:10.1017/s1355617709991020 CrossRefGoogle ScholarPubMed
Stevens, J. (1986). Applied multivariate statistics for the social sciences. London: Lawrence Erlbaum Associates.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale-third edition. San Antonio, TX: Psychological Corporation.Google Scholar
Ylvisaker, M., & Feeney, T. (2009). Apprenticeship in self-regulation: Supports and interventions for individuals with self-regulatory impairments. Developmental Neurorehabilitation, 12(5), 370379. doi:10.3109/17518420903087533 CrossRefGoogle ScholarPubMed
Supplementary material: File

Schuitema supplementary material S1

Schuitema supplementary material

Download Schuitema supplementary material S1(File)
File 72.5 KB
Supplementary material: File

Schuitema supplementary material S2

Schuitema supplementary material

Download Schuitema supplementary material S2(File)
File 24.4 KB