Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T04:16:14.354Z Has data issue: false hasContentIssue false

Dorsal Stream Contributions to Perceptual Asymmetries

Published online by Cambridge University Press:  02 December 2011

Nicole A. Thomas*
Affiliation:
School of Psychology, Flinders University, Adelaide, Australia
Oliver Schneider
Affiliation:
Department of Computer Science, University of British Colombia, Vancouver, British Columbia
Carl Gutwin
Affiliation:
Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan
Lorin J. Elias
Affiliation:
Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan
*
Correspondence and reprint requests to: Nicole A. Thomas, School of Psychology, Flinders University, GPO Box 2100, Adelaide, SA 5001 Australia. E-mail: [email protected]

Abstract

Neurologically normal individuals show a bias toward the left side of space, referred to as pseudoneglect due to its similarity to clinical hemispatial neglect. The left bias appears to be stronger in the lower visual field during free-viewing, which could result from preferential dorsal stream processing. The current experiments used modified greyscales tasks, incorporating motion and isoluminant color, to explore whether targeting dorsal or ventral stream processing influenced the strength of the left bias. It was expected that the left bias would be stronger on the motion task than on a task incorporating isoluminant color. In Study 1, similar left biases were observed during prolonged viewing for luminance, motion and red, but not green color. The unexpected finding of a leftward bias for red under prolonged viewing was replicated in Study 2. A leftward bias for motion was also evident during 150 ms viewing in Study 2. In Study 3, the left bias was not apparent when using a blue/yellow condition, suggesting the left bias for red under prolonged viewing was likely unique to red. Furthermore, the leftward bias for red disappeared under brief viewing conditions. It is suggested that dorsal stream processing likely underlies visual field differences in pseudoneglect. (JINS, 2012, 18, 251–259)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bálint, R., Harvey, M. (1995). Psychic paralysis of gaze, optic ataxia, and spatial disorder of attention. Cognitive Neuropsychology, 12, 265281. doi:10.1080/02643299508251999CrossRefGoogle Scholar
Barrett, A.M., Crosson, B., Crucian, G.P., Heilman, K.M. (2000). Horizontal line bisections in upper and lower body space. Journal of the International Neuropsychological Society, 6, 455459. doi:10.1017/S135561770064403XCrossRefGoogle ScholarPubMed
Bauer, R.M., Demery, J.A. (2003). Agnosia. In K.M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp. 236295). New York: Oxford University Press.CrossRefGoogle Scholar
Bellizzi, J.A., Hite, R.E. (1992). Environmental color, consumer feelings, and purchase likelihood. Psychology and Marketing, 9, 347363. doi:10.1002/mar.4220090502CrossRefGoogle Scholar
Bjoertomt, O., Cowey, A., Walsh, V. (2002). Spatial neglect in near and far space investigated by repetitive transcranial magnetic stimulation. Brain, 125, 20122022. doi:10.1093/brain/awf211CrossRefGoogle ScholarPubMed
Braun, C.C., Sansing, L., Silver, N.C. (1994). The interaction of signal word and color on warning labels: Differences in perceived hazard. Human Factors and Ergonomics Society Annual Meeting Proceedings, 2, 831835. doi:10.1177/154193129403801407CrossRefGoogle Scholar
Braun, C.C., Silver, N.C. (1995). Interaction of signal word and colour on warning labels: Differences in perceived hazard and behavioural compliance. Ergonomics, 38, 22072220. doi:10.1080/00140139508925263CrossRefGoogle ScholarPubMed
Bowers, D., Heilman, K.M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18, 491498. doi:10.1016/0028-3932(80)90151-7CrossRefGoogle ScholarPubMed
Christman, S.D., Niebauer, C.L. (1997). The relation between left-right and upper-lower visual field asymmetries (or: what goes up goes right, while what's left lays low). In S.D. Christman (Ed.), Cerebral asymmetries in sensory and perceptual processing (pp. 263296). Amsterdam: Elsevier Science B. V.CrossRefGoogle Scholar
Çiçek, M., Deouell, L.Y., Knight, R.T. (2009). Brain activity during landmark and line bisection tasks. Frontiers in Human Neuroscience, 3, 18. doi:10.3389/neuro.09.007.2009CrossRefGoogle ScholarPubMed
Clynes, M. (1977). Sentics: The touch of emotions. Garden City, NY: Anchor Press.Google Scholar
Corbetta, M., Shulman, G.L., Miezin, F.M., Petersen, S.E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270, 802805. doi:10.1126/science.270.5237.802CrossRefGoogle ScholarPubMed
Drago, V., Crucian, G.P., Pisani, F., Heilman, K.M. (2006). Distribution of attention in normal people as a function of spatial location: Right-left, up-down. Journal of the International Neuropsychological Society, 12, 532537. doi:10.1017/S1355617706060681CrossRefGoogle ScholarPubMed
Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Ward, R., Kyllingsbaek, S., Chavda, S. (2003). Attentional functions in dorsal and ventral simultanagnosia. Cognitive Neuropsychology, 20(8), 675701. doi:10.1080/02643290342000041CrossRefGoogle ScholarPubMed
Elias, L.J., Bryden, M.P., Bulman-Fleming, M.B. (1998). Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia, 36, 3743. doi:10.1016/S0028-3932(97)00107-3CrossRefGoogle ScholarPubMed
Elliot, A.J., Maier, M.A. (2007). Color and psychological functioning. Current Directions in Psychological Science, 16, 250254. doi:10.1111/j.1467-8721.2007.00514.xCrossRefGoogle Scholar
Elliot, A.J., Maier, M.A., Moller, A.C., Friedman, R., Meinhardt, J. (2007). Color and psychological functioning: The effect of red on performance attainment. Journal of Experimental Psychology: General, 136, 154168. doi:10.1037/0096-3445.136.1.154CrossRefGoogle ScholarPubMed
Elliot, A.J., Niesta, D. (2008). Romantic red: Red enhances men's attraction to women. Journal of Personality and Social Psychology, 95, 11501164. doi:10.1037/0022-3514.95.5.1150CrossRefGoogle ScholarPubMed
Fink, G.R., Marshall, J.C., Shah, N.J., Weiss, P.H., Halligan, P.W., Grosse-Ruyken, M., Freund, H.J. (2000). Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology, 54, 13241331.CrossRefGoogle ScholarPubMed
Fink, G.R., Marshall, J.C., Weiss, P.H., Zilles, K. (2001). The neural basis of vertical and horizontal line bisection judgments: An fMRI study of normal volunteers. Neuroimage, 14, S59S67. doi:10.1006/nimg.2001.0819CrossRefGoogle ScholarPubMed
Foxe, J.J., McCourt, M.E., Javitt, D.C. (2003). Right hemisphere control of visuospatial attention: Line-bisection judgments evaluated with high-density electrical mapping and source analysis. Neuroimage, 19, 710726. doi:10.1016/S1053-8119(03)00057-0CrossRefGoogle ScholarPubMed
Goodale, M.A., Milner, A.D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 2025. doi:10.1016/0166-2236(92)90344-8CrossRefGoogle ScholarPubMed
Goodale, M.A., Westwood, D.A. (2004). An evolving view of duplex vision: Separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology, 14, 203211. doi:10.1016/j.conb.2004.03.002CrossRefGoogle ScholarPubMed
Gur, M., Akri, V. (1992). Isoluminant stimuli may not expose the full contribution of color to visual functioning: Spatial contrast sensitivity measurements indicate interaction between color and luminance processing. Vision Research, 32, 12531262. doi:10.1016/0042-6989(92)90220-DCrossRefGoogle Scholar
Haxby, J.V., Grady, C.L., Horwitz, B., Ungerleider, L.G., Mishkin, M., Carson, R.E., Rapoport, S.I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United States of America, 88, 16211625. doi:10.1073/pnas.88.5.1621CrossRefGoogle ScholarPubMed
He, S., Cavanagh, P., Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383, 334337. doi:10.1038/383334a0CrossRefGoogle ScholarPubMed
Hikosaka, O., Miyauchi, S., Shimojo, S. (1993). Voluntary and stimulus-induced attention detected as motion sensation. Perception, 22, 517526.CrossRefGoogle ScholarPubMed
Hupka, R.B., Zaleski, A., Otto, J., Reidl, L., Tarabrina, N.V. (1997). The colors of anger, envy, fear, and jealousy: A cross-cultural study. Journal of Cross-Cultural Psychology, 28, 156171. doi:10.1177/0022022197282002CrossRefGoogle Scholar
James, T.W., Culham, J., Humphrey, K., Milner, A.D., Goodale, M.A. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study. Brain, 126, 24632475. doi:10.1093/brain/awg248CrossRefGoogle Scholar
Jewell, G., McCourt, M.E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93110. doi:10.1016/S0028-3932(99)00045-7CrossRefGoogle ScholarPubMed
Kastner, S., Ungerleider, L.G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315341. doi:10.1146/annurev.neuro.23.1.315Google ScholarPubMed
Kaya, N., Epps, H.H. (2004). Relationship between color and emotion: A study of college students. College Student Journal, 38, 396405.Google Scholar
Kinsbourne, M., Warrington, E.K. (1962). A disorder of simultaneous form perception. Brain, 85, 461486. doi:10.1093/brain/85.3.461CrossRefGoogle ScholarPubMed
Livingstone, M.S., Hubel, D.H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. The Journal of Neuroscience, 7, 34163468.CrossRefGoogle ScholarPubMed
Livingstone, M., Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740749. doi:10.1126/science.3283936CrossRefGoogle ScholarPubMed
Lu, S., Zhou, K. (2005). Stimulus-driven attentional capture by equiluminant color change. Psychonomic Bulletin & Review, 12, 567572. doi:10.3758/BF03193806CrossRefGoogle ScholarPubMed
Luh, K.E. (1995). Line bisection and perceptual asymmetries in normal individuals: What you see is not what you get. Neuropsychology, 9, 435448. doi:10.1037/0894-4105.9.4.435CrossRefGoogle Scholar
Luria, A.R. (1959). Disorders of “simultaneous perception” in a case of bilateral occipito-parietal brain injury. Brain, 82(3), 437449. doi:10.1093/brain/82.3.437CrossRefGoogle Scholar
Maier, M.A., Barchfeld, P., Elliot, A.J., Pekrun, R. (2009). Context specificity of implicit preferences: The case of human preference for red. Emotion, 9, 734738. doi:10.1037/a0016818CrossRefGoogle ScholarPubMed
McCourt, M.E., Garlinghouse, M. (2000). Asymmetries of visuospatial attention are modulated by viewing distance and visual field elevation: Pseudoneglect in peripersonal and extrapersonal space. Cortex, 36, 715731. doi:10.1016/S0010-9452(08)70548-3CrossRefGoogle ScholarPubMed
McCourt, M.E., Jewell, G. (1999). Visuospatial attention in line bisection: Stimulus modulation of pseudoneglect. Neuropsychologia, 37, 843855. doi:10.1016/S0028-3932(98)00140-7CrossRefGoogle ScholarPubMed
McCourt, M.E., Olafson, C. (1997). Cognitive and perceptual influences on visual line bisection: Psychophysical and chronometric analyses of pseudoneglect. Neuropsychologia, 35, 369380. doi:10.1016/S0028-3932(96)00143-1CrossRefGoogle ScholarPubMed
Mehta, R., Zhu, R. (2009). Blue or red? Exploring the effect of color on cognitive task performances. Science, 323, 12261229. doi:10.1126/science.1169144CrossRefGoogle ScholarPubMed
Mishkin, M., Lewis, M.E., Ungerleider, L.G. (1982). Equivalence of parieto-preoccipital subareas for visuospatial ability in monkeys. Behavioral Brain Research, 6, 4155. doi:10.1016/0166-4328(82)90080-8CrossRefGoogle ScholarPubMed
Moller, A.C., Elliot, A.J., Maier, M.A. (2009). Basic hue-meaning associations. Emotion, 9, 898902. doi:10.1037/a0017811CrossRefGoogle ScholarPubMed
Mullen, K. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. The Journal of Physiology, 359, 381400.CrossRefGoogle ScholarPubMed
Nicholls, M.E., Bradshaw, J.L., Mattingley, J.B. (1999). Free-viewing perceptual asymmetries for the judgement of brightness, numerosity and size. Neuropsychologia, 37, 307314. doi:10.1016/S0028-3932(98)00074-8CrossRefGoogle ScholarPubMed
Nicholls, M.E., Roberts, G.R. (2002). Can free-viewing perceptual asymmetries be explained by scanning pre-motor or attentional biases? Cortex, 38, 113136. doi:10.1016/S0010-9452(08)70645-2CrossRefGoogle ScholarPubMed
Niemeier, M., Stojanoski, B., Singh, V.W., Chu, E. (2008). Paradoxical cross-over due to attention to high or low spatial frequencies. Brain and Cognition, 67, 115125. doi:10.1016/j.bandc.2007.12.002CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., Jepma, M., La Fors, S., Olivers, C.N. (2008). The role of the magnocellular and parvocellular pathways in the attentional blink. Brain and Cognition, 68, 4248. doi:10.1016/j.bandc.2008.02.119CrossRefGoogle ScholarPubMed
Perenin, M.T., Vighetto, A. (1988). Optic ataxia: A specific disruption in visuomotor mechanisms. Brain, 111, 643674. doi:10.1093/brain/111.3.643CrossRefGoogle ScholarPubMed
Posner, M.I., Rothbart, M.K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 123. doi:10.1146/annurev.psych.58.110405.085516CrossRefGoogle Scholar
Previc, F.H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. The Behavioral and Brain Sciences, 13, 519575. doi:10.1017/S0140525X00080018CrossRefGoogle Scholar
Previc, F.H. (1998). The neuropsychology of 3-D space. Psychological Bulletin, 124, 123164. doi:10.1037//0033-2909.124.2.123CrossRefGoogle ScholarPubMed
Previc, F.H., Blume, J. (1993). Visual search asymmetries in three-dimensional space. Vision Research, 33, 26972704. doi:10.1016/0042-6989(93)90229-PCrossRefGoogle ScholarPubMed
Previc, F.H., Breitmeyer, B.G., Weinstein, L. (1995). Discriminability of random-dot stereograms in three-dimensional space. International Journal of Neuroscience, 80, 247253. doi:10.3109/00207459508986103CrossRefGoogle ScholarPubMed
Rubens, A. (1985). Caloric stimulation and unilateral visual neglect. Neurology, 35, 10191024.CrossRefGoogle ScholarPubMed
Siman-Tov, T., Mendelsohn, A., Schonberg, T., Avidan, G., Podlipsky, I., Pessoa, L., Hendler, T. (2007). Bihemispheric leftward bias in a visuospatial attention-related network. The Journal of Neuroscience, 27, 1127111278. doi:10.1523/JNEUROSCI.0599-07.2007CrossRefGoogle Scholar
Skottun, B.C., Skoyles, J.R. (2006). Is coherent motion an appropriate test for magnocellular sensitivity? Brain and Cognition, 61, 172180. doi:10.1016/j.bandc.2005.12.004CrossRefGoogle ScholarPubMed
Tchernikov, I., Fallah, M. (2010). A color hierarchy for automatic target selection. Public Library of Science, 5, 14. doi:10.1371/journal.pone.0009338Google ScholarPubMed
Thomas, N.A., Elias, L.J. (2010a). Do perceptual asymmetries differ in peripersonal and extrapersonal space? Journal of the International Neuropsychological Society, 16, 210214. doi:10.1017/S135561770999097XCrossRefGoogle ScholarPubMed
Thomas, N.A., Elias, L.J. (2010b). Perceptual asymmetries in greyscales: Object-based versus space-based influences. Cortex doi:10.1016/j.cortex.2010.11.015 [Epub ahead of print].Google ScholarPubMed
Thomas, N.A., Elias, L.J. (2011). Upper and lower visual field differences in perceptual asymmetries. Brain Research, 1387, 108115. doi:10.1016/j.brainres.2011.02.063CrossRefGoogle ScholarPubMed
Weiss, P.H., Marshall, J.C., Wunderlich, G., Tellmann, L., Halligan, P.W., Freund, H., Fink, G.R. (2000). Neural consequences of acting in near versus far space: A physiological basis for clinical dissociations. Brain, 123, 25312541. doi:10.1093/brain/123.12.2531CrossRefGoogle ScholarPubMed
White, B.J., Kerzel, D., Gegenfurtner, K.R. (2006). Visually guided movements to color targets. Experimental Brain Research, 175, 110126. doi:10.1007/s00221-006-0532-5CrossRefGoogle ScholarPubMed
Wilson, G.D. (1966). Arousal properties of red versus green. Perceptual and Motor Skills, 23, 947949. doi:10.2466/pms.1966.23.3.947CrossRefGoogle Scholar

Thomas Supplementary Material

Thomas Supplementary Material

Download Thomas Supplementary Material(Video)
Video 2.9 MB