Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T15:32:57.349Z Has data issue: false hasContentIssue false

Distal Sensory Polyneuropathy is Associated with Neuropsychological Test Performance among Persons with HIV

Published online by Cambridge University Press:  12 June 2012

Robert P. Fellows*
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Desiree A. Byrd
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Kathryn Elliott
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Jessica Robinson-Papp
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Monica Rivera Mindt
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Susan Morgello
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
*
Correspondence and reprint requests to: Robert P. Fellows, Department of Neurology, Box 1134 Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029. E-mail: [email protected]

Abstract

While distal sensory polyneuropathy (DSP) is the most common neurological condition associated with HIV, causing nerve damage in upper and lower extremities, its impact on neuropsychological test performance is unclear. In this study, we analyzed baseline data for 278 HIV-infected participants with comprehensive neurological and neurocognitive evaluations to examine the contribution of DSP and anatomic distribution of neuropathic signs (upper extremity or lower extremity) on standardized domain scores. We found that participants with DSP performed significantly worse in multiple domains containing timed psychomotor tests (i.e., motor, information processing speed and executive functioning). With regard to executive functioning, differences were limited to a test with a motor component (Trail Making Test, Part B). The group with clinically detectable neuropathic signs in the upper extremities and the group with signs limited to the lower extremities both performed worse in the motor domain than the group without DSP. Participants with DSP demonstrated a unique pattern of impairment limited to neuropsychological domains with timed psychomotor tests. These results suggest that caution should be used in interpretation of neuropsychological tests in patients with DSP, as some abnormalities may be exacerbated by peripheral nervous system pathology. (JINS, 2012, 19, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ances, B.M., Ortega, M., Vaida, F., Heaps, J., Paul, R. (2012). Independent effects of HIV, aging, and HAART on brain volumetric measures. Journal of Acquired Immune Deficiency Syndromes, 59(5), 469477. doi:10.1097/QAI.0b013e318249db17CrossRefGoogle ScholarPubMed
Antinori, A., Arendt, G., Becker, J.T., Brew, B.J., Byrd, D.A., Cherner, M., Wojna, V.E. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69(18), 17891799. doi:10.1212/01.WNL.0000287431.88658.8bCrossRefGoogle ScholarPubMed
Baldewicz, T.T., Leserman, J., Silva, S.G., Petitto, J.M., Golden, R.N., Perkins, D.O., Evans, D.L. (2004). Changes in neuropsychological functioning with progression of HIV-1 infection: Results of an 8-year longitudinal investigation. AIDS and Behavior, 8(3), 345355. doi:10.1023/B:AIBE.0000044081.42034.54CrossRefGoogle ScholarPubMed
Basso, M.R., Bornstein, R.A. (2000). Effects of immunosuppression and disease severity upon neuropsychological function in HIV infection. Journal of Clinical and Experimental Neuropsychology, 22(1), 104114. doi:FT104CrossRefGoogle ScholarPubMed
Beck, A.T., Brown, G., Steer, R.A. (1996). Beck Depression Inventory II manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Becker, J.T., Sanchez, J., Dew, M.A., Lopez, O.L., Dorst, S.K., Banks, G. (1997). Neuropsychological abnormalities among HIV-infected individuals in a community-based sample. Neuropsychology, 11(4), 592601. doi:10.1037/0894-4105.11.4.592CrossRefGoogle Scholar
Benedict, R.H. (1997). Brief Visuospatial Memory Test–Revised. Odessa, FL: Psychological Assessment Resources.Google Scholar
Benedict, R.H.B., Schretlen, D., Groninger, L., Brandt, J. (1998). Hopkins Verbal Learning Test-Revised: Normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12(1), 4355. doi:10.1076/clin.12.1.43.1726CrossRefGoogle Scholar
Bornstein, R.A., Nasrallah, H.A., Para, M.F., Whitacre, C.C., Fass, R.J. (1993). Change in neuropsychological performance in asymptomatic HIV infection: 1-year follow-up. AIDS, 7(12), 16071611.CrossRefGoogle ScholarPubMed
Bromberg, M.B., Jaros, L. (1998). Symmetry of normal motor and sensory nerve conduction measurements. Muscle & Nerve, 21(4), 498503. doi:10.1002/(SICI)1097-4598(199804)21:4<498::AID-MUS8>3.0.CO;2-43.0.CO;2-4>CrossRefGoogle ScholarPubMed
Carey, C.L., Woods, S.P., Rippeth, J.D., Gonzalez, R., Moore, D.J., Marcotte, T.D., … HNRC Group (2004). Initial validation of a screening battery for the detection of HIV-associated cognitive impairment. The Clinical Neuropsychologist, 18(2), 234248. doi:10.1080/13854040490501448CrossRefGoogle ScholarPubMed
Castelo, J.M., Courtney, M.G., Melrose, R.J., Stern, C.E. (2007). Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise. Archives of Neurology, 64(9), 12751280. doi:10.1001/archneur.64.9.1275CrossRefGoogle ScholarPubMed
Cherner, M., Ellis, R.J., Lazzaretto, D., Young, C., Mindt, M.R., Atkinson, J.H., … HIV Neurobehavioral Research Center Group. (2004). Effects of HIV-1 infection and aging on neurobehavioral functioning: Preliminary findings. AIDS, 18(Suppl. 1), S27S34.CrossRefGoogle ScholarPubMed
Cherry, C.L., Wesselingh, S.L., Lal, L., McArthur, J.C. (2005). Evaluation of a clinical screening tool for HIV-associated sensory neuropathies. Neurology, 65(11), 17781781. doi:10.1212/01.wnl.0000187119.33075.41CrossRefGoogle ScholarPubMed
Davis, H.F., Skolasky, R.L. Jr, Selnes, O.A., Burgess, D.M., McArthur, J.C. (2002). Assessing HIV-associated dementia: Modified HIV dementia scale versus the grooved pegboard. The AIDS Reader, 12(1), 2931, 38.Google ScholarPubMed
Di Sclafani, V., Mackay, R.D., Meyerhoff, D.J., Norman, D., Weiner, M.W., Fein, G. (1997). Brain atrophy in HIV infection is more strongly associated with CDC clinical stage than with cognitive impairment. Journal of the International Neuropsychological Society, 3(3), 276287.CrossRefGoogle ScholarPubMed
Diehr, M.C., Cherner, M., Wolfson, T.J., Miller, S.W., Grant, I., Heaton, R.K., & HIV Neurobehavioral Research Center Group. (2003). The 50 and 100-item short forms of the paced auditory serial addition task (PASAT): Demographically corrected norms and comparisons with the full PASAT in normal and clinical samples. Journal of Clinical and Experimental Neuropsychology, 25(4), 571585. doi:10.1076/jcen.25.4.571.13876CrossRefGoogle ScholarPubMed
Ellis, R.J., Rosario, D., Clifford, D.B., McArthur, J.C., Simpson, D., Alexander, T., … CHARTER Study Group. (2010). Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: The CHARTER Study. Archives of Neurology, 67(5), 552558.CrossRefGoogle ScholarPubMed
England, J.D., Gronseth, G.S., Franklin, G., Miller, R.G., Asbury, A.K., Carter, G.T., Sumner, A.J. (2005). Distal symmetrical polyneuropathy: Definition for clinical research. Muscle & Nerve, 31(1), 113123. doi:10.1002/mus.20233CrossRefGoogle ScholarPubMed
Evans, S.R., Ellis, R.J., Chen, H., Yeh, T.M., Lee, A.J., Schifitto, G., Clifford, D.B. (2011). Peripheral neuropathy in HIV: Prevalence and risk factors. AIDS, 25(7), 919928. doi:10.1097/QAD.0b013e328345889dCrossRefGoogle ScholarPubMed
Gladsjo, J.A., Schuman, C.C., Evans, J.D., Peavy, G.M., Miller, S.W., Heaton, R.K. (1999). Norms for letter and category fluency: Demographic corrections for age, education, and ethnicity. Assessment, 6(2), 147178.CrossRefGoogle ScholarPubMed
Hasin, D.S., Trautman, K.D., Miele, G.M., Samet, S., Smith, M., Endicott, J. (1996). Psychiatric research interview for substance and mental disorders (PRISM): Reliability for substance abusers. The American Journal of Psychiatry, 153(9), 11951201.Google ScholarPubMed
Heaton, R.K., Clifford, D.B., Franklin, D.R. Jr, Woods, S.P., Ake, C., Vaida, F., … CHARTER Group. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology, 75(23), 20872096. doi:10.1212/WNL.0b013e318200d727CrossRefGoogle ScholarPubMed
Heaton, R.K., Grant, I., Butters, N., White, D.A., Kirson, D., Atkinson, J.H., Ellis, R.J. (1995). The HNRC 500--neuropsychology of HIV infection at different disease stages. HIV neurobehavioral research center. Journal of the International Neuropsychological Society, 1(3), 231251.CrossRefGoogle ScholarPubMed
Heaton, R., Grant, I., Matthews, C.G. (1991). Comprehensive norms for an expanded Halstead-Reitan Battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources.Google Scholar
Keswani, S.C., Pardo, C.A., Cherry, C.L., Hoke, A., McArthur, J.C. (2002). HIV-associated sensory neuropathies. AIDS, 16(16), 21052117.CrossRefGoogle ScholarPubMed
Kongs, S.K., Thompson, L.L., Iverson, G.L., Heaton, R.K. (2000). WCST-64: Wisconsin Card Sorting Test-64 Card Version Professional Manual. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Llorente, A.M., Miller, E.N., D'Elia, L.F., Selnes, O.A., Wesch, J., Becker, J.T., Satz, P. (1998). Slowed information processing in HIV-1 disease. the multicenter AIDS cohort study (MACS). Journal of Clinical and Experimental Neuropsychology, 20(1), 6072. doi:10.1076/jcen.20.1.60.1489CrossRefGoogle ScholarPubMed
Matthews, C.G., Kløve, H. (1964). Instruction manual for the Adult Neuropsychology Test Battery. Madison, WI: University of Wisconsin Medical School.Google Scholar
Morgan, E.E., Woods, S.P., Delano-Wood, L., Bondi, M.W., Grant, I., … HIV Neurobehavioral Research Program (HNRP) Group. (2011). Intraindividual variability in HIV infection: Evidence for greater neurocognitive dispersion in older HIV seropositive adults. Neuropsychology, 25(5), 645654. doi:10.1037/a0023792; 10.1037/a0023792CrossRefGoogle ScholarPubMed
Morgello, S., Estanislao, L., Simpson, D., Geraci, A., DiRocco, A., Gerits, P., … Manhattan HIV Brain Bank. (2004). HIV-associated distal sensory polyneuropathy in the era of highly active antiretroviral therapy: The Manhattan HIV Brain Bank. Archives of Neurology, 61(4), 546551. doi:10.1001/archneur.61.4.546CrossRefGoogle ScholarPubMed
Nakamoto, B.K., McMurtray, A., Davis, J., Valcour, V., Watters, M.R., Shiramizu, B., Shikuma, C.M. (2010). Incident neuropathy in HIV-infected patients on HAART. AIDS Research and Human Retroviruses, 26(7), 759765. doi:10.1089/aid.2009.0276CrossRefGoogle ScholarPubMed
Obiabo, Y.O., Ogunrin, O.A., Ogun, A.S. (2012). Effects of highly active antiretroviral therapy on cognitive functions in severely immune-compromised HIV-seropositive patients. Journal of the Neurological Sciences, 313(1-2), 115122. doi:10.1016/j.jns.2011.09.011CrossRefGoogle ScholarPubMed
Paul, R.H., Ernst, T., Brickman, A.M., Yiannoutsos, C.T., Tate, D.F., Cohen, R.A., … HIV MRS Consortium. (2008). Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. Journal of the International Neuropsychological Society, 14(5), 725733. doi:10.1017/S1355617708080910CrossRefGoogle ScholarPubMed
Parsons, T.D., Rogers, S., Hall, C., Robertson, K. (2007). Motor based assessment of neurocognitive functioning in resource-limited international settings. Journal of Clinical and Experimental Neuropsychology, 29(1), 5966. doi:10.1080/13803390500488538CrossRefGoogle ScholarPubMed
Preston, D.C., Shapiro, B.E. (2005). Electromyography and neuromuscular disorders: Clinical-electrophysiologic correlations (2nd ed.). Philadelphia, PA: Elsevier.Google Scholar
Reger, M., Welsh, R., Razani, J., Martin, D.J., Boone, K.B. (2002). A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of the International Neuropsychological Society, 8(3), 410424.CrossRefGoogle ScholarPubMed
Robertson, K.R., Smurzynski, M., Parsons, T.D., Wu, K., Bosch, R.J., Wu, J., Ellis, R.J. (2007). The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS, 21(14), 19151921. doi:10.1097/QAD.0b013e32828e4e27CrossRefGoogle ScholarPubMed
Sacktor, N., Skolasky, R., Selnes, O.A., Watters, M., Poff, P., Shiramizu, B., Valcour, V. (2007). Neuropsychological test profile differences between young and old human immunodeficiency virus-positive individuals. Journal of Neurovirology, 13(3), 203209. doi:10.1080/13550280701258423CrossRefGoogle Scholar
Sacktor, N., Skolasky, R.L., Cox, C., Selnes, O., Becker, J.T., Cohen, B., … Multicenter AIDS Cohort Study (MACS). (2010). Longitudinal psychomotor speed performance in human immunodeficiency virus-seropositive individuals: Impact of age and serostatus. Journal of Neurovirology, 16(5), 335341. doi:10.3109/13550284.2010.504249CrossRefGoogle ScholarPubMed
Schifitto, G., McDermott, M.P., McArthur, J.C., Marder, K., Sacktor, N., Epstein, L., … Dana Consortium on the Therapy of HIV Dementia and Related Cognitive Disorders. (2002). Incidence of and risk factors for HIV-associated distal sensory polyneuropathy. Neurology, 58(12), 17641768.CrossRefGoogle ScholarPubMed
Scott, J.C., Woods, S.P., Carey, C.L., Weber, E., Bondi, M.W., Grant, I., & HIV Neurobehavioral Research Center (HNRC) Group. (2011). Neurocognitive consequences of HIV infection in older adults: An evaluation of the “cortical” hypothesis. AIDS and Behavior, 15(6), 11871196. doi:10.1007/s10461-010-9815-8CrossRefGoogle ScholarPubMed
Selnes, O.A., Galai, N., Bacellar, H., Miller, E.N., Becker, J.T., Wesch, J., McArthur, J.C. (1995). Cognitive performance after progression to AIDS: A longitudinal study from the multicenter AIDS cohort study. Neurology, 45(2), 267275.CrossRefGoogle ScholarPubMed
Simioni, S., Cavassini, M., Annoni, J.M., Rimbault Abraham, A., Bourquin, I., Schiffer, V., Du Pasquier, R.A. (2010). Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS, 24(9), 12431250. doi:10.1097/QAD.0b013e3283354a7bCrossRefGoogle ScholarPubMed
Stern, Y., McDermott, M.P., Albert, S., Palumbo, D., Selnes, O.A., McArthur, J., … Dana Consortium on the Therapy of HIV-Dementia and Related Cognitive Disorders. (2001). Factors associated with incident human immunodeficiency virus-dementia. Archives of Neurology, 58(3), 473479.CrossRefGoogle ScholarPubMed
Valcour, V., Paul, R., Neuhaus, J., Shikuma, C. (2011). The effects of age and HIV on neuropsychological performance. Journal of the International Neuropsychological Society, 17(1), 190195. doi:10.1017/S1355617710001438CrossRefGoogle ScholarPubMed
Valcour, V., Shikuma, C., Shiramizu, B., Watters, M., Poff, P., Selnes, O., Sacktor, N. (2004). Higher frequency of dementia in older HIV-1 individuals: The Hawaii aging with HIV-1 cohort. Neurology, 63(5), 822827.CrossRefGoogle ScholarPubMed
Vivithanaporn, P., Heo, G., Gamble, J., Krentz, H.B., Hoke, A., Gill, M.J., Power, C. (2010). Neurologic disease burden in treated HIV/AIDS predicts survival: A population-based study. Neurology, 75(13), 11501158. doi:10.1212/WNL.0b013e3181f4d5bbCrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler Adult Intelligence Scale–Third edition: Administration and scoring manual. San Antonio, TX: Harcourt Brace.Google Scholar
Wilkinson, G. (1993). Wide Range Achievement Test (3rd ed.). Administration manual. Wilmington, DE: Wide Range Inc.Google Scholar
Wetter, S.R., Delis, D.C., Houston, W.S., Jacobson, M.W., Lansing, A., Cobell, K., Bondi, M.W. (2006). Heterogeneity in verbal memory: A marker of preclinical Alzheimer's disease? Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 13(3-4), 503515. doi:10.1080/138255890969492CrossRefGoogle ScholarPubMed
Woods, S.P., Rippeth, J.D., Frol, A.B., Levy, J.K., Ryan, E., Soukup, V.M., Heaton, R.K. (2004). Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. Journal of Clinical and Experimental Neuropsychology, 26(6), 759778. doi:10.1080/13803390490509565CrossRefGoogle ScholarPubMed