Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:41:56.022Z Has data issue: false hasContentIssue false

Differential Focal and Nonfocal Prospective Memory Accuracy in a Demographically Diverse Group of Nondemented Community-Dwelling Older Adults

Published online by Cambridge University Press:  17 November 2014

Susan Y. Chi
Affiliation:
Department of Psychology, Queens College and The Graduate Center of the City University of New York, Flushing, New York Department of Psychology, Brooklyn College and The Graduate Center of the City University of New York, Brooklyn, New York
Laura A. Rabin*
Affiliation:
Department of Psychology, Queens College and The Graduate Center of the City University of New York, Flushing, New York Department of Psychology, Brooklyn College and The Graduate Center of the City University of New York, Brooklyn, New York Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
Avner Aronov
Affiliation:
Department of Psychology, Brooklyn College and The Graduate Center of the City University of New York, Brooklyn, New York
Joshua Fogel
Affiliation:
Department of Finance and Business Management, Brooklyn College of the City University of New York, Brooklyn, New York
Ashu Kapoor
Affiliation:
Department of Psychology, Queens College and The Graduate Center of the City University of New York, Flushing, New York Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
Cuiling Wang
Affiliation:
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
*
Correspondence and reprint requests to: Laura Rabin, Brooklyn College, Department of Psychology, 2900 Bedford Avenue, Brooklyn, NY 11210. E-mail: [email protected]

Abstract

Although prospective memory (PM) is compromised in mild cognitive impairment (MCI), it is unclear which specific cognitive processes underlie these PM difficulties. We investigated older adults’ performance on a computerized event-based focal versus nonfocal PM task that made varying demands on the amount of attentional control required to support intention retrieval. Participants were nondemented individuals (mean age=81.8 years; female=66.1%) enrolled in a community-based longitudinal study, including those with amnestic MCI (aMCI), nonamnestic MCI (naMCI), subjective cognitive decline (SCD), and healthy controls (HC). Participants included in the primary analysis (n=189) completed the PM task and recalled and/or recognized both focal and nonfocal PM cues presented in the task. Participants and their informants also completed a questionnaire assessing everyday PM failures. Relative to HC, those with aMCI and naMCI were significantly impaired in focal PM accuracy (p<.05). In a follow-up analysis that included 13 additional participants who successfully recalled and/or recognized at least one of the two PM cues, the naMCI group showed deficits in nonfocal PM accuracy (p<.05). There was a significant negative correlation between informant reports of PM difficulties and nonfocal PM accuracy (p<.01). PM failures in aMCI may be primarily related to impairment of spontaneous retrieval processes associated with the medial temporal lobe system, while PM failures in naMCI potentially indicate additional deficits in executive control functions and prefrontal systems. The observed focal versus nonfocal PM performance profiles in aMCI and naMCI may constitute specific behavioral markers of PM decline that result from compromise of separate neurocognitive systems. (JINS, 2014, 20, 1–13)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, O.P., & Almeida, S.A. (1999). Short versions of the geriatric depression scale: A study of their validity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV. International Journal of Geriatric Psychiatry, 14, 858865.3.0.CO;2-8>CrossRefGoogle Scholar
Andrade, A.S., McGruder, H.F., Wu, A.W., Celano, S.A., Skolasky, R.L., Selnes, O.A., & McArthur, J.C. (2005). A programmable prompting device improves adherence to highly active antiretroviral therapy in HIV-infected subjects with memory impairment. Clinical Infectious Diseases, 41(6), 875882. doi:10.1086/432877 CrossRefGoogle ScholarPubMed
Amariglio, R.E., Becker, J.A., Carmasin, J., Wadsworth, L.P., Lorius, N., Sullivan, C., & Rentz, D.M. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia, 50(12), 28802886. doi:10.1016/j.neuropsychologia.2012.08.011 CrossRefGoogle ScholarPubMed
Bell-McGinty, S., Lopez, O.L., Cidis Meltzer, C., Scanlon, J., Whyte, E.M., DeKosky, S.T., & Becker, J.T. (2005). Differential cortical atrophy in subgroups of mild cognitive impairment. Archives of Neurology, 62(9), 13931397. doi:10.1001/archneur.62.9.1393 CrossRefGoogle ScholarPubMed
Blanco-Campal, A., Coen, R.F., Lawlor, B.A., Walsh, J.B., & Burke, T.E. (2009). Detection of prospective memory deficits in mild cognitive impairment of suspected Alzheimer's disease etiology using a novel event-based prospective memory task. Journal of the International Neuropsychological Society, 15(1), 154159. doi:10.1017/S1355617708090127 CrossRefGoogle ScholarPubMed
Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L.M., Dawson, D.R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12(2), 194209. doi:10.1017/S1355617706060310 CrossRefGoogle ScholarPubMed
Burgess, P.W., Quayle, A., & Frith, C.D. (2001). Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia, 39(6), 545555. doi:10.1016/S0028-3932(00)00149-4 CrossRefGoogle ScholarPubMed
Busse, A., Hensel, A., Gühne, U., Angermeyer, M.C., & Riedel-Heller, S.G. (2006). Mild cognitive impairment: Long-term course of four clinical subtypes. Neurology, 67(12), 21762185. doi:10.1212/01.wnl.0000249117.23318.e1 CrossRefGoogle ScholarPubMed
Chau, L.T., Lee, J.B., Fleming, J., Roche, N., & Shum, D. (2007). Reliability and normative data for the Comprehensive Assessment of Prospective Memory (CAPM). Neuropsychological Rehabilitation, 17(6), 707722. doi:10.1080/09602010600923926 CrossRefGoogle ScholarPubMed
Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181197. doi:10.1023/B:NERV.0000009483.91468.fb CrossRefGoogle ScholarPubMed
Costa, A., Caltagirone, C., & Carlesimo, G.A. (2011). Prospective memory impairment in mild cognitive impairment: An analytical review. Neuropsychology Review, 21(4), 390404. doi:10.1007/s11065-011-9172-z CrossRefGoogle ScholarPubMed
Costa, A., Perri, R., Serra, L., Barban, F., Gatto, I., Zabberoni, S., & Carlesimo, G.A. (2010). Prospective memory functioning in mild cognitive impairment. Neuropsychology, 24(3), 327404. doi:10.1037/a0018015 CrossRefGoogle ScholarPubMed
Craik, F.I.M. (1983). On the transfer of information from temporary to permanent memory. Philosophical Transactions of the Royal Society, Series B, Biological Sciences, 302, 341359.Google Scholar
Craik, F.I.M. (1986). A functional account of age differences in memory. In F. Klix & H. Hagendorf (Eds.), Human memory and cognitive capabilities: Mechanisms and performances (pp. 409422). Amsterdam: Elsevier.Google Scholar
Dufouil, C., Fuhrer, R., & Alperovitch, A. (2005). Subjective cognitive complaints and cognitive decline: Consequence or predictor? The epidemiology of vascular aging study. Journal of the American Geriatics Society, 53(4), 616621. doi:10.1111/j.1532-5415.2005.53209.x CrossRefGoogle ScholarPubMed
Einstein, G.O., & McDaniel, M.A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 717726. doi:10.1037/0278-7393.16.4.717 Google ScholarPubMed
Einstein, G.O., & McDaniel, M.A. (1996). Retrieval processes in prospective memory: Theoretical approaches and some new empirical findings. In M. Bradimonte, G.O. Einstein & M.A. McDaniel (Eds.), Prospective memory: Theory and applications (pp. 115141). Mahwah: Erlbaum.Google Scholar
Einstein, G.O., McDaniel, M.A., Thomas, R., Mayfield, S., Shank, H., Morrisette, N., & Breneiser, J. (2005). Multiple processes in prospective memory retrieval: Factors determining monitoring versus spontaneous retrieval. Journal of Experimental Psychology: General, 134(3), 327342. doi:10.1037/0096-3445.134.3.327 CrossRefGoogle ScholarPubMed
Foster, E.R., McDaniel, M.A., Repovš, G., & Hershey, T. (2009). Prospective memory in Parkinson disease across laboratory and self-reported everyday performance. Neuropsychology, 23(3), 347358. doi:10.1037/a0014692 CrossRefGoogle ScholarPubMed
Gifford, K.A., Liu, D., Lu, Z., Tripodis, Y., Cantwell, N.G., Palmisano, J., Kowall, N., & Jefferson, A.L. (2014). The source of cognitive complaints predicts diagnostic conversion differentially among nondemented older adults. Alzheimer’s & Dementia, 10, 319327. doi:10.1016/j.jalz.2013.02.007 CrossRefGoogle ScholarPubMed
Grober, E., & Buschke, H. (1987). Genuine memory deficits in dementia. Developmental Neuropsychology, 3(1), 1336. doi:10.1080/87565648709540361 CrossRefGoogle Scholar
Henry, J.D., MacLeod, M.S., Phillips, L.H., & Crawford, J.R. (2004). A meta-analytic review of prospective memory and aging. Psychology and Aging, 19(1), 2739. doi:10.1037/0882-7974.19.1.27 CrossRefGoogle ScholarPubMed
Jessen, F., Wiese, B., Bachmann, C., Eifflaender-Gorfer, S., Haller, F., Kolsch, H., & Bickel, H. (2010). Prediction of dementia by subjective memory impairment: Effects of severity and temporal association with cognitive impairment. Archives of General Psychiatry, 67(4), 414422. doi:10.1001/archgenpsychiatry.2010.30 CrossRefGoogle ScholarPubMed
Kaplan, E.F., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Philadelphia: Lea and Febiger; 1983.Google Scholar
Karantzoulis, S., Troyer, A.K., & Rich, J.B. (2009). Prospective memory in amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 15(3), 407415.CrossRefGoogle ScholarPubMed
Katz, M.J., Lipton, R.B., Hall, C.B., Zimmerman, M.E., Sanders, A.E., Verghese, J., & Derby, C.A. (2012). Age and sex specific prevalence and incidence of mild cognitive impairment, dementia and Alzheimer’s dementia in blacks and whites: A report from the Einstein Aging Study. Alzheimer Disease & Associated Disorders, 26(4), 335343. doi:10.1097/WAD.0b013e31823dbcfc CrossRefGoogle ScholarPubMed
Kryscio, R.J., Abner, E.L., Cooper, G.E., Fardo, D.W., Jicha, G.A., Nelson, P.T., & Schmitt, F.A. (2014). Self-reported memory complaints Implications from a longitudinal cohort with autopsies. Neurology, 7, 13591365. doi:10.1212/WNL.0000000000000856 CrossRefGoogle Scholar
Lipton, R., Katz, M.J., Kuslansky, G., Sliwinski, M.J., Stewart, W., Verghese, J., & Buschke, H. (2003). Screening for dementia by telephone using the memory impairment screen. Journal of the American Geriatric Society, 51(10), 13821390. doi:10.1046/j.1532-5415.2003.51455.x CrossRefGoogle ScholarPubMed
Loewenstein, D., Curiel, R., Crocco, E., Czaja, S., Levin, B., Wahlestedt, C., & Wright, C. (2013). Prospective memory deficits in English-and Spanish-speaking patients with mild cognitive impairment (MCI) and PreMCI. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 9(4), P323P323.CrossRefGoogle Scholar
Marc, L.G., Raue, P.J., & Bruce, M.L. (2008). Screening performance of the Geriatric Depression Scale (GDS-15) in a diverse elderly home care population. The American Journal of Geriatric Psychiatry, 16(11), 914921. doi:10.1097/JGP.0b013e318186bd67 CrossRefGoogle Scholar
Martin-Saez, M., Deakins, J., Winson, R., Watson, P., & Wilson, B.A. (2011). A 10-year follow up of a paging service for people with memory and planning problems within a healthcare system: How do recent users differ from the original users? Neuropsychological Rehabilitation, 21(6), 769783. doi:10.1080/09602011.2011.614378 CrossRefGoogle ScholarPubMed
Masdeu, J.C., Zubieta, J.L., & Arbizu, J. (2005). Neuroimaging as a marker of the onset and progression of Alzheimer’s disease. Journal of the Neurological Sciences, 236(1–2), 5564. doi:10.1016/j.jns.2005.05.001 CrossRefGoogle ScholarPubMed
McDaniel, M.A., & Einstein, G.O. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14(7), S127S144. doi:10.1002/acp.775 CrossRefGoogle Scholar
McDaniel, M.A., Guynn, M.J., Einstein, G.O., & Breneiser, J. (2004). Cue-focused and reflexive-associative processes in prospective memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(3), 605614. doi:10.1037/0278-7393.30.3.605 Google ScholarPubMed
McDaniel, M.A., Shelton, J.T., Breneiser, J.E., Moynan, S., & Balota, D.A. (2011). Focal and nonfocal prospective memory performance in very mild dementia: A signature decline. Neuropsychology, 25(3), 387396. doi:10.1037/a0021682 CrossRefGoogle ScholarPubMed
Mielke, M.M., Okonkwo, O.C., Oishi, K., Mori, S., Tighe, S., Miller, M.I., & Lyketsos, C.G. (2012). Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimer's & Dementia, 8(2), 105113. doi:10.1016/j.jalz.2011.05.2416 CrossRefGoogle ScholarPubMed
Mitchell, A.J., Beaumont, H., Ferguson, D., Yadegarfar, M., & Stubbs, B. (2014). Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatrica Scandinavica. doi:10.1111/acps.12336 CrossRefGoogle ScholarPubMed
Mosconi, L., De Santi, S., Brys, M., Tsui, W.H., Pirraglia, E., Glodzik-Sobanska, L., & de Leon, M.J. (2008). Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biological Psychiatry, 63(6), 609618. doi:10.1016/j.biopsych.2007.05.030 CrossRefGoogle ScholarPubMed
Nickl-Jockschat, T., Kleiman, A., Schulz, J.B., Schneider, F., Laird, A.R., Fox, P.T., & Reetz, K. (2012). Neuroanatomic changes and their association with cognitive decline in mild cognitive impairment: A meta-analysis. Brain Structure and Function, 217(1), 115125.CrossRefGoogle ScholarPubMed
Nobili, F., De Carli, F., Frisoni, G.B., Portet, F., Verhey, F., Rodriguez, G., & Visser, P.J. (2009). SPECT predictors of cognitive decline and Alzheimer's disease in mild cognitive impairment. Journal of Alzheimer's Disease, 17(4), 761772. doi:10.3233/JAD-2009-1091 CrossRefGoogle ScholarPubMed
Park, D.C., & Kidder, D.P. (1996). Prospective memory and medication adherence. In M. Brandimont, G. Einstein & M. McDaniel (Eds.), Prospective memory: Theory and applications (pp. 369390). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183194. doi:10.1111/j.1365-2796.2004.01388.x CrossRefGoogle ScholarPubMed
Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985. doi:10.1001/archneur.58.12.1985 CrossRefGoogle ScholarPubMed
Petersen, R.C., & Negash, S. (2008). Mild cognitive impairment: An overview. CNS Spectrums, 13(1), 4553.CrossRefGoogle ScholarPubMed
Pino, O., Poletti, F., & Caffarra, P. (2013). Cognitive demand and reminders effect on time-based prospective memory in Amnesic Mild Cognitive Impairment (aMCI) and in healthy elderly. Open Journal of Medical Psychology, 2, 3546. doi:10.4236/ojmp.2013.21007 CrossRefGoogle Scholar
Rabin, L.A., Chi, S.Y., Wang, C., Fogel, J., Kann, S.J., & Aronov, A. (2014). Prospective memory on a novel clinical task in older adults with mild cognitive impairment and subjective cognitive decline. Neuropsychological Rehabilitation, 24, 868893. doi:10.1080/09602011.2014.915855 CrossRefGoogle ScholarPubMed
Rabin, L.A., Wang, C., Katz, M.J., Derby, C.A., Buschke, H., & Lipton, R.B. (2012). Predicting Alzheimer’s disease: Neuropsychological tests, self-reports, and informant reports of cognitive difficulties. Journal of the American Geriatrics Society, 60(6), 11281134. doi:10.1111/j.1532-5415.2012.03956.x CrossRefGoogle ScholarPubMed
Rabin, L.A., Wang, C., Katz, M.J., & Lipton, R.B. (2014). February. A psychometric approach to the classification of subjective cognitive decline and mild cognitive impairment. Presented at the Annual Meeting of the International Neuropsychological Society, Seattle, Washington.Google Scholar
Reisberg, B., Shulman, M.B., Torossian, C., Leng, L., & Zhu, W. (2010). Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimer's & Dementia, 6(1), 1124. doi:10.1016/j.jalz.2009.10.002 CrossRefGoogle ScholarPubMed
Reitan, R.M. (1958). Validity of the Trail Making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276. doi:10.2466/pms.1958.8.3.271 CrossRefGoogle Scholar
Reynolds, J.R., West, R., & Braver, T. (2009). Distinct neural circuits support transient and sustained processes in prospective memory and working memory. Cerebral Cortex, 19(5), 12081221. doi:10.1093/cercor/bhn164 CrossRefGoogle ScholarPubMed
Rosen, W. (1980). Verbal fluency in aging and dementia. Journal of Clinical Neuropsychology, 2(2), 135146. doi:10.1080/01688638008403788 CrossRefGoogle Scholar
Salthouse, T.A., Berish, D.E., & Siedlecki, K.L. (2004). Construct validity and age sensitivity of prospective memory. Memory & Cognition, 32(7), 11331148. doi:10.3758/BF03196887 CrossRefGoogle ScholarPubMed
Saykin, A.J., Wishart, H.A., Rabin, L.A., Santulli, R.B., Flashman, L.A., West, J.D., & Mamourian, A.C. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67(5), 834842. doi:10.1212/01.wnl.0000234032.77541.a2 CrossRefGoogle ScholarPubMed
Scheef, L., Spottke, A., Daerr, M., Joe, A., Striepens, N., Kölsch, H., & Jessen, F. (2012). Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology, 79(13), 13321339. doi:10.1212/WNL.0b013e31826c1a8d CrossRefGoogle ScholarPubMed
Scheltens, P. (2009). Imaging in Alzheimer’s disease. Dialogues in Clinical Neuroscience, 11(2), 191199.CrossRefGoogle ScholarPubMed
Schmitter-Edgecombe, M., Woo, E., & Greeley, D.R. (2009). Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment. Neuropsychology, 23(2), 168177. doi:10.1037/a0014186 CrossRefGoogle ScholarPubMed
Sheikh, V.I., & Yesavage, V.A. (1986). Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. In T.L. Brink (Ed,). Clinical gerontology: A guide to assessment and intervention (pp. 165174). New York: Haworth Press.Google Scholar
Simoni, J.M., Huh, D., Frick, P.A., Pearson, C.R., Andrasik, M.P., Dunbar, P.J., & Hooton, T.M. (2009). Peer support and pager messaging to promote antiretroviral modifying therapy in Seattle: A randomized controlled trial. Journal of Acquired Immune Deficiency Syndromes, 52(4), 465473. doi:10.1097/QAI.0b013e3181b9300c CrossRefGoogle ScholarPubMed
Smith, R.E. (2003). The cost of remembering to remember in event-based prospective memory: Investigating the capacity demands of delayed intention performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 347361. doi:10.1037/0278-7393.29.3.347 Google ScholarPubMed
Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press.Google Scholar
Tam, J.W., & Schmitter-Edgecombe, M. (2013). Event-based prospective memory and everyday forgetting in healthy older adults and individuals with mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 35(3), 279290. doi:10.1080/13803395.2013.770823 CrossRefGoogle ScholarPubMed
Thompson, C., Henry, J.D., Rendell, P.G., Withall, & Brodaty, H. (2010). Prospective memory function in mild cognitive impairment and early dementia. Journal of the International Neuropsychological Society, 16(2), 318325. doi:10.1017/S1355617709991354 CrossRefGoogle ScholarPubMed
Troyer, A.K., & Murphy, K.J. (2007). Memory for intentions in amnestic mild cognitive impairment: Time-and event-based prospective memory. Journal of the International Neuropsychological Society, 13(2), 365369. doi:10.1017/S1355617707070452 CrossRefGoogle ScholarPubMed
Twamley, E.W., Woods, S.P., Zurhellen, C.H., Vertinski, M., Narvaez, J.M., Mausbach, B.T., & Jeste, D.V. (2008). Neuropsychological substrates and everyday functioning implications of prospective memory impairment in schizophrenia. Schizophrenia Research, 106(1), 4249.CrossRefGoogle ScholarPubMed
van den Berg, E., Kant, N., & Postma, A. (2012). Remember to buy milk on the way home! A meta-analytic review of prospective memory in mild cognitive impairment and dementia. Journal of the International Neuropsychological Society, 18(4), 706716. doi:10.1017/S1355617712000331 CrossRefGoogle Scholar
van Oijen, M., de Jong, F.J., Hofman, A., Koudstaal, P.J., & Breteler, M.M. (2007). Subjective memory complaints, education, and risk of Alzheimer's disease. Alzheimer’s & Dementia, 3(2), 9297. doi:10.1016/j.jalz.2007.01.011 CrossRefGoogle ScholarPubMed
Visser, P.J., Verhey, F., Knol, D.L., Scheltens, P., Wahlund, L.-O., Freund-Levi, Y., & Blennow, K. (2009). Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: A prospective cohort study. Lancet Neurology, 8(7), 619627. doi:10.1016/S1474-4422(09)70139-5 CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Wechsler Memory Scale-Revised. San Antonio: The Psychological Corporation.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale (3rd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
West, R., & Krompinger, J. (2005). Neural correlates of prospective and retrospective memory. Neuropsychologia, 43(3), 418433. doi:10.1016/j.neuropsychologia.2004.06.012 CrossRefGoogle ScholarPubMed
Wilson, B.A., Emslie, H.C., Quirk, K., & Evans, J.J. (2001). Reducing everyday memory and planning problems by means of a paging system: A randomised control crossover study. Journal of Neurology, Neurosurgery, & Psychiatry, 70(4), 477482. doi:10.1136/jnnp.70.4.477 CrossRefGoogle ScholarPubMed
Woods, S.P., Iudicello, J.E., Moran, L.M., Carey, C.L., Dawson, M.S., & Grant, I. (2008). HIV-associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology, 22(1), 110.CrossRefGoogle ScholarPubMed