Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T18:42:19.110Z Has data issue: false hasContentIssue false

Current Concepts in Decision-Making Research from Bench to Bedside

Published online by Cambridge University Press:  16 November 2012

Lesley K. Fellows*
Affiliation:
Department of Neurology & Neurosurgery, McGill University, Montreal, QC
*
Correspondence and reprint requests to: Lesley K. Fellows, Department of Neurology & Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University St, Montreal, QC H3A 2B4. E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposia
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Tranel, D., Hamann, S., Young, A.W., Calder, A.J., Phelps, E.A., Damasio, A.R. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia, 37(10), 11111117.CrossRefGoogle ScholarPubMed
Ainslie, G. (2001). Breakdown of will. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bechara, A., Damasio, H., Damasio, A.R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295307.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., Anderson, S.W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18(1), 428437.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., Damasio, A.R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 12931295.CrossRefGoogle ScholarPubMed
Beer, J.S., John, O.P., Scabini, D., Knight, R.T. (2006). Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18(6), 871879.CrossRefGoogle ScholarPubMed
Camille, N., Coricelli, G., Sallet, J., Pradat-Diehl, P., Duhamel, J.R., Sirigu, A. (2004). The involvement of the orbitofrontal cortex in the experience of regret. Science, 304(5674), 11671170.CrossRefGoogle ScholarPubMed
Camille, N., Griffiths, C.A., Vo, K., Fellows, L.K., Kable, J.W. (2011). Ventromedial frontal lobe damage disrupts value maximization in humans. The Journal of Neuroscience, 31(20), 75277532.CrossRefGoogle ScholarPubMed
Clark, L., Bechara, A., Damasio, H., Aitken, M.R., Sahakian, B.J., Robbins, T.W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131(Pt 5), 13111322.CrossRefGoogle ScholarPubMed
Cohen, J.D., Insel, T.R. (2008). Cognitive neuroscience and schizophrenia: translational research in need of a translator. Biological Psychiatry, 64(1), 23.CrossRefGoogle ScholarPubMed
Cools, R., Altamirano, L., D'Esposito, M. (2006). Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia, 44(10), 16631673.CrossRefGoogle ScholarPubMed
Dagher, A., Robbins, T.W. (2009). Personality, addiction, dopamine: insights from Parkinson's disease. Neuron, 61(4), 502510.CrossRefGoogle ScholarPubMed
Damasio, H., Grabowski, T., Frank, R., Galaburda, A.M., Damasio, A.R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science, 264(5162), 11021105.CrossRefGoogle ScholarPubMed
Eslinger, P.J., Damasio, A.R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology, 35(12), 17311741.CrossRefGoogle ScholarPubMed
Evans, A.H., Lees, A.J. (2004). Dopamine dysregulation syndrome in Parkinson's disease. Current Opinion in Neurology, 17(4), 393398.CrossRefGoogle ScholarPubMed
Fellows, L.K. (2006). Deciding how to decide: ventromedial frontal lobe damage affects information acquisition in multi-attribute decision making. Brain, 129(Pt 4), 944952.CrossRefGoogle ScholarPubMed
Fellows, L.K. (2007). Advances in understanding ventromedial prefrontal function: the accountant joins the executive. Neurology, 68(13), 991995.CrossRefGoogle ScholarPubMed
Fellows, L.K., Farah, M.J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain, 126(8), 18301837.CrossRefGoogle ScholarPubMed
Fellows, L.K., Farah, M.J. (2005a). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 5863.CrossRefGoogle ScholarPubMed
Fellows, L.K., Farah, M.J. (2005b). Dissociable elements of human foresight: a role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia, 43(8), 12141221.CrossRefGoogle Scholar
Fellows, L.K., Farah, M.J. (2007). The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 26692674.CrossRefGoogle ScholarPubMed
Gigerenzer, G., Todd, P.M. (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
Harlow, J.M. (1999). Passage of an iron rod through the head. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(2), 281283.CrossRefGoogle ScholarPubMed
Heberlein, A.S., Padon, A.A., Gillihan, S.J., Farah, M.J., Fellows, L.K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20(4), 721733.CrossRefGoogle Scholar
Henri-Bhargava, A., Simioni, A., Fellows, L.K. (2012). Ventromedial frontal lobe damage disrupts the accuracy, but not the speed, of value-based preference judgments. Neuropsychologia, 50(7), 15361542.CrossRefGoogle Scholar
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., Camerer, C.F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310(5754), 16801683.CrossRefGoogle ScholarPubMed
Kable, J.W., Glimcher, P.W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 16251633.CrossRefGoogle ScholarPubMed
Kahneman, D., Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47, 263291.CrossRefGoogle Scholar
Krajbich, I., Lu, D., Camerer, C., Rangel, A. (2012). The attentional drift-diffusion model extends to simple purchasing decisions. Frontiers in Psychology, 3, 193.CrossRefGoogle ScholarPubMed
Loewenstein, G., Rick, S., Cohen, J.D. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647672.CrossRefGoogle ScholarPubMed
Loewenstein, G.F., Weber, E.U., Hsee, C.K., Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267286.CrossRefGoogle ScholarPubMed
Maia, T.V., McClelland, J.L. (2004). A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proceedings of the National Academy of Sciences of the United States of America, 101(45), 1607516080.CrossRefGoogle ScholarPubMed
McClure, S.M., Laibson, D.I., Loewenstein, G., Cohen, J.D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503507.CrossRefGoogle ScholarPubMed
Montague, P.R., Berns, G.S. (2002). Neural economics and the biological substrates of valuation. Neuron, 36(2), 265284.CrossRefGoogle ScholarPubMed
Murray, E.A., Wise, S.P., Rhodes, S.E.V. (2011). What can different brains do with reward? In J.A. Gottfried (Ed.), Neurobiology of sensation and reward. Boca Raton, FL: CRC Press.Google ScholarPubMed
O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H., Dolan, R.J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329337.CrossRefGoogle ScholarPubMed
Padoa-Schioppa, C. (2011). Neurobiology of economic choice: a good-based model. Annual Review of Neuroscience, 34, 333359.CrossRefGoogle Scholar
Padoa-Schioppa, C., Cai, X. (2011). The orbitofrontal cortex and the computation of subjective value: consolidated concepts and new perspectives. Annals of the New York Academy of Science, 1239, 130137.CrossRefGoogle ScholarPubMed
Rahman, S., Sahakian, B., Cardinal, R., Rogers, R., Robbins, T. (2001). Decision making and neuropsychiatry. Trends in Cognitive Sciences, 5(6), 271277.CrossRefGoogle ScholarPubMed
Rangel, A., Camerer, C., Montague, P.R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545556.CrossRefGoogle ScholarPubMed
Rogers, R.D., Everitt, B.J., Baldacchino, A., Blackshaw, A.J., Swainson, R., Wynne, K., Robbins, T.W. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20(4), 322339.CrossRefGoogle ScholarPubMed
Rolls, E.T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 1129.CrossRefGoogle ScholarPubMed
Rolls, E.T., Hornak, J., Wade, D., McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery, and Psychiatry, 57(12), 15181524.CrossRefGoogle ScholarPubMed
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 127.CrossRefGoogle ScholarPubMed
Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White, K., Lehman, D.R. (2002). Maximizing versus satisficing: happiness is a matter of choice. Journal of Personality and Social Psychology, 83(5), 11781197.CrossRefGoogle ScholarPubMed
Sellitto, M., Ciaramelli, E., di Pellegrino, G. (2010). Myopic discounting of future rewards after medial orbitofrontal damage in humans. The Journal of Neuroscience, 30(49), 1642916436.CrossRefGoogle ScholarPubMed
Sharp, C., Monterosso, J., Montague, P.R. (2012). Neuroeconomics: a bridge for translational research. Biological Psychiatry, 72(2), 8792.CrossRefGoogle ScholarPubMed
Sutton, R.S., Barton, A.G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.Google Scholar
Swainson, R., Rogers, R.D., Sahakian, B.J., Summers, B.A., Polkey, C.E., Robbins, T.W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia, 38(5), 596612.CrossRefGoogle ScholarPubMed
Tom, S.M., Fox, C.R., Trepel, C., Poldrack, R.A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315(5811), 515518.CrossRefGoogle ScholarPubMed
Tsuchida, A., Doll, B.B., Fellows, L.K. (2010). Beyond reversal: a critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. The Journal of Neuroscience, 30(50), 1686816875.CrossRefGoogle ScholarPubMed
Zald, D.H., Andreotti, C. (2010). Neuropsychological assessment of the orbital and ventromedial prefrontal cortex. Neuropsychologia, 48(12), 33773391.CrossRefGoogle ScholarPubMed