Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:19:45.931Z Has data issue: false hasContentIssue false

A comprehensive assessment of neurocognitive and psychological functioning in adults with early-treated phenylketonuria

Published online by Cambridge University Press:  22 September 2022

Hayley E. Clocksin
Affiliation:
Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
Emily E. Abbene
Affiliation:
Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
Shawn Christ*
Affiliation:
Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
*
Corresponding author: Shawn Christ, email: [email protected]

Abstract

Objective:

Relative to youth with early-treated phenylketonuria (ETPKU), much less is known regarding the cognitive profile of adults with ETPKU. The present study aimed to address this gap by providing a comprehensive assessment of neuropsychological functioning among adults with ETPKU.

Method:

A sample of 40 adults with ETPKU (ages 18 – 36) and a demographically matched group of 32 healthy individuals without PKU participated. Participants completed a comprehensive neuropsychological battery including the NIH Toolbox, Wechsler Abbreviated Scale of Intelligence – Second Edition (WASI-II), Conners’ Continuous Performance Test (CPT-3), select subtests from the Weschler Adult Intelligence Scale – Fourth Edition (WAIS-IV) as well as several self-report measures of cognitive and psychoemotional functioning. Scores from these tests were combined to create cognitive composites reflecting overall task performance in the areas of verbal ability, visuospatial skills, executive functioning, motor skills, and processing speed.

Results:

No group differences were observed for full scale IQ or verbal ability. However, individuals with ETPKU demonstrated poorer performance on measures of executive functioning, processing speed, motor skills, and visuospatial skills as compared to the non-PKU group. Within the ETPKU group, recent blood phenylalanine levels (an indicator of metabolic control) were significantly correlated with performance across most cognitive domains and aspects of psychological functioning.

Conclusions:

Present findings suggest that the neuropsychological profile of adult ETPKU is characterized by circumscribed impairments in select cognitive domains. In addition, the results underscore the importance of maintaining metabolic control across the lifespan in individuals with ETPKU.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitkenhead, L., Krishna, G., Ellerton, C., Moinuddin, M., Matcham, J., Shiel, L., Hossain, S., Kiffin, M., Foley, J., Skeath, R., Cleary, M., Lachmann, R., & Murphy, E. (2021). Long-term cognitive and psychosocial outcomes in adults with phenylketonuria. Journal of Inherited Metabolic Disease, 44, 13531368. https://doi.org/10.1002/jimd.12413 CrossRefGoogle ScholarPubMed
Aldridge, K., Cole, K. K., Moffitt Gunn, A. J., Peck, D., White, D. A., & Christ, S. E. (2020). The effects of early-treated phenylketonuria on volumetric measures of the cerebellum. Molecular Genetics and Metabolism Reports, 25, 100647. https://doi.org/10.1016/j.ymgmr.2020.100647 CrossRefGoogle ScholarPubMed
Anderson, P. J., & Leuzzi, V. (2010). White matter pathology in phenylketonuria. Molecular Genetics and Metabolism, 99, S3S9. https://doi.org/10.1016/j.ymgme.2009.10.005 CrossRefGoogle ScholarPubMed
Anderson, P. J., Wood, S. J., Francis, D. E., Coleman, L., Anderson, V., & Boneh, A. (2007). Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Developmental Neuropsychology, 32, 645668. https://doi.org/10.1080/87565640701375963 CrossRefGoogle ScholarPubMed
Antshel, K. M., & Waisbren, S. E. (2003). Developmental timing of exposure to elevated levels of phenylalanine is associated with ADHD symptom expression. Journal of Abnormal Child Psychology, 31, 565574. https://doi.org/10.1023/A:1026239921561 CrossRefGoogle ScholarPubMed
Balderston, N. L., Vytal, K. E., O’Connell, K., Torrisi, S., Letkiewicz, A., Ernst, M., & Grillon, C. (2017). Anxiety patients show reduced working memory related dlPFC activation during safety and threat. Depression and Anxiety, 34, 2536. https://doi.org/10.1002/da.22518 CrossRefGoogle ScholarPubMed
Bechar, M., Bornstein, B., Elian, M., & Sandbank, U. (1965). Phenylketonuria presenting an intermittent progressive course. Journal of Neurology, Neurosurgery, and Psychiatry, 28, 165170. https://doi.org/10.1136/jnnp.28.2.165 CrossRefGoogle ScholarPubMed
Beck, A. T., & Steer, R. A. (1993). Beck anxiety inventory manual. Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the beck depression inventory-II. Psychological Corporation.Google Scholar
Berry, S. A., Brown, C., Grant, M., Greene, C. L., Jurecki, E., Koch, J., Moseley, K., Suter, R., van Calcar, S. C., Wiles, J., & Cederbaum, S. (2013). Newborn screening 50 years later: Access issues faced by adults with PKU. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 15, 591599. https://doi.org/10.1038/gim.2013.10 CrossRefGoogle ScholarPubMed
Bik-Multanowski, M., Pietrzyk, J. J., & Mozrzymas, R. (2011). Routine use of CANTAB system for detection of neuropsychological deficits in patients with PKU. Molecular Genetics and Metabolism, 102, 210213. https://doi.org/10.1016/j.ymgme.2010.10.003 CrossRefGoogle ScholarPubMed
Bilder, D. A., Kobori, J. A., Cohen-Pfeffer, J. L., Johnson, E. M., Jurecki, E. R., & Grant, M. L. (2017). Neuropsychiatric comorbidities in adults with phenylketonuria: A retrospective cohort study. Molecular Genetics and Metabolism, 121, 18. https://doi.org/10.1016/j.ymgme.2017.03.002 CrossRefGoogle ScholarPubMed
Bilder, D. A., Noel, J. K., Baker, E. R., Irish, W., Chen, Y., Merilainen, M. J., Prasad, S., & Winslow, B. J. (2016). Systematic review and meta-analysis of neuropsychiatric symptoms and executive functioning in adults with phenylketonuria. Developmental Neuropsychology, 41(4), 245260. https://doi.org/10.1080/87565641.2016.1243109 CrossRefGoogle ScholarPubMed
Bodner, K. E., Aldridge, K., Moffitt, A. J., Peck, D., White, D. A., & Christ, S. E. (2012). A volumetric study of basal ganglia structures in individuals with early-treated phenylketonuria. Molecular Genetics and Metabolism, 107, 302307. https://doi.org/10.1016/j.ymgme.2012.08.007 CrossRefGoogle ScholarPubMed
Brumm, V. L., Azen, C., Moats, R. A., Stern, A. M., Broomand, C., Nelson, M. D., & Koch, R. (2004). Neuropsychological outcome of subjects participating in the PKU Adult Collaborative Study: A preliminary review. Journal of Inherited Metabolic Disease, 27, 549566. https://doi.org/10.1023/B:BOLI.0000042985.02049.ff CrossRefGoogle ScholarPubMed
Canton, M., Gall, D. L., Feillet, F., Bonnemains, C., & Roy, A. (2019). Neuropsychological profile of children with early and continuously treated phenylketonuria: systematic review and future approaches. Journal of the International Neuropsychological Society, 25, 624643. https://doi.org/10.1017/S1355617719000146 CrossRefGoogle ScholarPubMed
Carlozzi, N. E., Tulsky, D. S., Wolf, T. J., Goodnight, S., Heaton, R. K., Casaletto, K. B., Wong, A. W. K., Baum, C. M., Gershon, R. C., & Heinemann, A. W. (2017). Construct validity of the NIH toolbox cognition battery in individuals with stroke. Rehabilitation Psychology, 62, 443454. https://doi.org/10.1037/rep0000195 CrossRefGoogle ScholarPubMed
Channon, S., German, E., Cassina, C., & Lee, P. (2004). Executive functioning, memory, and learning in phenylketonuria. Neuropsychology, 18, 613620. https://doi.org/10.1037/0894-4105.18.4.613 CrossRefGoogle ScholarPubMed
Christ, S. E., Abbene, E. E., Clocksin, H. E., & Wegrzyn, A. K. (2021). Motor control and learning in individuals with early-treated phenylketonuria. Neuropsychology, 35, 731741. https://doi.org/10.1037/neu0000758 CrossRefGoogle ScholarPubMed
Christ, S. E., Clocksin, H. E., Burton, B. K., Grant, M. L., Waisbren, S., Paulin, M.-C., Bilder, D. A., White, D. A., & Saville, C. (2020). Executive function in phenylketonuria (PKU): Insights from the Behavior Rating Inventory of Executive Function (BRIEF) and a large sample of individuals with PKU. Neuropsychology, 34, 456. https://doi.org/10.1037/neu0000625 CrossRefGoogle Scholar
Christ, S. E., Moffitt, A. J., Peck, D., White, D. A., & Hilgard, J. (2012). Decreased functional brain connectivity in individuals with early-treated phenylketonuria: Evidence from resting state fMRI. Journal of Inherited Metabolic Disease, 35, 807816. https://doi.org/10.1007/s10545-011-9439-9 CrossRefGoogle ScholarPubMed
Christ, S. E., Price, M. H., Bodner, K. E., Saville, C., Moffitt, A. J., & Peck, D. (2016). Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria. Molecular Genetics and Metabolism, 118, 38. https://doi.org/10.1016/j.ymgme.2016.02.004 CrossRefGoogle ScholarPubMed
Clacy, A., Sharman, R., & McGill, J. (2014). Depression, anxiety, and stress in young adults with phenylketonuria: Associations with biochemistry. Journal of Developmental & Behavioral Pediatrics, 35, 388391. https://doi.org/10.1097/DBP.0000000000000072 CrossRefGoogle ScholarPubMed
Clocksin, H. E., Hawks, Z. W., White, D. A., & Christ, S. E. (2021). Inter- and intra-tract analysis of white matter abnormalities in individuals with early-treated phenylketonuria (PKU). Molecular Genetics and Metabolism, 132, 1118. https://doi.org/10.1016/j.ymgme.2020.12.001 CrossRefGoogle ScholarPubMed
Constantino, J. N. (2012). Social Responsiveness Scale (SRS-2) (2nd ed.). Western Psychological Services.Google Scholar
Dawson, C., Murphy, E., Maritz, C., Chan, H., Ellerton, C., Carpenter, R. H. S., & Lachmann, R. H. (2011). Dietary treatment of phenylketonuria: The effect of phenylalanine on reaction time. Journal of Inherited Metabolic Disease, 34, 449454. https://doi.org/10.1007/s10545-010-9276-2 CrossRefGoogle ScholarPubMed
de Groot, M. J., Hoeksma, M., Blau, N., Reijngoud, D. J., & van Spronsen, F. J. (2010). Pathogenesis of cognitive dysfunction in phenylketonuria: Review of hypotheses. Molecular Genetics and Metabolism, 99, S86S89. https://doi.org/10.1016/j.ymgme.2009.10.016 CrossRefGoogle ScholarPubMed
Heaton, R. K., Akshoomoff, N., Tulsky, D., Mungas, D., Weintraub, S., Dikmen, S., Beaumont, J., Casaletto, K. B., Conway, K., Slotkin, J., & Gershon, R. (2014). Reliability and validity of composite scores from the NIH Toolbox Cognition Battery in adults. Journal of the International Neuropsychological Society: JINS, 20, 588598. https://doi.org/10.1017/S1355617714000241 CrossRefGoogle ScholarPubMed
Hofman, D. L., Champ, C. L., Lawton, C. L., Henderson, M., & Dye, L. (2018). A systematic review of cognitive functioning in early treated adults with phenylketonuria. Orphanet Journal of Rare Diseases, 13, 150. https://doi.org/10.1186/s13023-018-0893-4 CrossRefGoogle ScholarPubMed
Hood, A., Antenor-Dorsey, J. A. V., Rutlin, J., Hershey, T., Shimony, J. S., McKinstry, R. C., Grange, D. K., Christ, S. E., Steiner, R., & White, D. A. (2015). Prolonged exposure to high and variable phenylalanine levels over the lifetime predicts brain white matter integrity in children with phenylketonuria. Molecular Genetics and Metabolism, 114, 1924. https://doi.org/10.1016/j.ymgme.2014.11.007 CrossRefGoogle ScholarPubMed
Hood, A. M., King, A. A., Fields, M. E., Ford, A. L., Guilliams, K. P., Hulbert, M. L., Lee, J.-M., & White, D. A. (2019). Higher executive abilities following a blood transfusion in children and young adults with sickle cell disease. Pediatric Blood & Cancer, 66, e27899. https://doi.org/10.1002/pbc.27899 Google Scholar
Jahja, R., Huijbregts, S., de Sonneville, L., Meere, J., Legemaat, A., Bosch, A., Hollak, C., Rubio-Gozalbo, M., Brouwers, M., Hofstede, F., Vries, M., Janssen, M., Ans, T., Langendonk, J., & Spronsen, F. (2017). Cognitive profile and mental health in adult phenylketonuria: A PKU-COBESO study. Neuropsychology, 31, 437. https://doi.org/10.1037/neu0000358 CrossRefGoogle ScholarPubMed
Jahja, R., van Spronsen, F. J., de Sonneville, L. M. J., van der Meere, J. J., Bosch, A. M., Hollak, C. E. M., Rubio-Gozalbo, M. E., Brouwers, M. C. G. J., Hofstede, F. C., de Vries, M. C., Janssen, M. C. H., van der Ploeg, A. T., Langendonk, J. G., & Huijbregts, S. C. J. (2016). Social-cognitive functioning and social skills in patients with early treated phenylketonuria: A PKU-COBESO study. Journal of Inherited Metabolic Disease, 39, 355362. https://doi.org/10.1007/s10545-016-9918-0 CrossRefGoogle ScholarPubMed
Janzen, D., & Nguyen, M. (2010). Beyond executive function: Non-executive cognitive abilities in individuals with PKU. Molecular Genetics and Metabolism, 99, S47S51. https://doi.org/10.1016/j.ymgme.2009.10.009 CrossRefGoogle ScholarPubMed
Manti, F., Nardecchia, F., Chiarotti, F., Carducci, C., Carducci, C., & Leuzzi, V. (2016). Psychiatric disorders in adolescent and young adult patients with phenylketonuria. Molecular Genetics and Metabolism, 117, 1218. https://doi.org/10.1016/j.ymgme.2015.11.006 CrossRefGoogle Scholar
Meredith, L. R., Lim, A. C., & Ray, L. A. (2020). Neurocognitive performance in alcohol use disorder using the NIH toolbox: Role of severity and sex differences. Drug and Alcohol Dependence, 216, 108269. https://doi.org/10.1016/j.drugalcdep.2020.108269 CrossRefGoogle ScholarPubMed
Moyle, J. J., Fox, A. M., Arthur, M., Bynevelt, M., & Burnett, J. R. (2007). Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychology Review, 17, 91101. https://doi.org/10.1007/s11065-007-9021-2 CrossRefGoogle ScholarPubMed
Nardecchia, F., Manti, F., Chiarotti, F., Carducci, C., Carducci, C., & Leuzzi, V. (2015). Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: A longitudinal study. Molecular Genetics and Metabolism, 115, 8490. https://doi.org/10.1016/j.ymgme.2015.04.003 CrossRefGoogle ScholarPubMed
Paine, R. S. (1957). The Variability in manifestations of untreated patients with phenylketonuria (phenylpyruvic Aciduria). Pediatrics, 20, 290302.CrossRefGoogle ScholarPubMed
Palermo, L., Geberhiwot, T., MacDonald, A., Limback, E., Hall, S. K., & Romani, C. (2017). Cognitive outcomes in early-treated adults with phenylketonuria (PKU): A comprehensive picture across domains. Neuropsychology, 31, 255267. https://doi.org/10.1037/neu0000337 CrossRefGoogle ScholarPubMed
Palermo, L., MacDonald, A., Limback, E., Robertson, L., Howe, S., Geberhiwot, T., & Romani, C. (2020). Emotional health in early-treated adults with phenylketonuria (PKU): Relationship with cognitive abilities and blood phenylalanine. Journal of Clinical and Experimental Neuropsychology, 42, 142159. https://doi.org/10.1080/13803395.2019.1696753 CrossRefGoogle ScholarPubMed
Pardridge, W. M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. Journal of Neurochemistry, 28, 103108. https://doi.org/10.1111/j.1471-4159.1977.tb07714.x CrossRefGoogle ScholarPubMed
Pardridge, W. M. (1998). Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochemical Research, 23, 635644. https://doi.org/10.1023/A:1022482604276 CrossRefGoogle ScholarPubMed
Pietz, J., Fätkenheuer, B., Armbruster, M., Esser, G., & Schmidt, H. (1997). Psychiatric disorders in adult patients with early-treated phenylketonuria. Pediatrics, 99, 345350. https://doi.org/10.1542/peds.99.3.345 CrossRefGoogle ScholarPubMed
Romani, C., Palermo, L., MacDonald, A., Limback, E., Hall, S. K., & Geberhiwot, T. (2017). The impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: Effects across tasks and developmental stages. Neuropsychology, 31, 242254. https://doi.org/10.1037/neu0000336 CrossRefGoogle ScholarPubMed
Roth, R., Isquith, P. K., & Gioia, G. A. (2005). BRIEF-A: Behavior rating inventory of executive function—adult version. Psychological Assessment Resources.Google Scholar
Shulkin, B. L., Betz, A. L., Koeppe, R. A., & Agranoff, B. W. (1995). Inhibition of neutral amino acid transport across the human blood-brain barrier by phenylalanine. Journal of Neurochemistry, 64, 12521257. https://doi.org/10.1046/j.1471-4159.1995.64031252.x CrossRefGoogle ScholarPubMed
Smith, Q. R., Momma, S., Aoyagi, M., & Rapoport, S. I. (1987). Kinetics of neutral amino acid transport across the blood-brain barrier. Journal of Neurochemistry, 49, 16511658. https://doi.org/10.1111/j.1471-4159.1987.tb01039.x CrossRefGoogle ScholarPubMed
Ten Hoedt, A. E., de Sonneville, L. M. J., Francois, B., Ter Horst, N. M., Janssen, M. C. H., Rubio-Gozalbo, M. E., Wijburg, F. A., Hollak, C. E. M., & Bosch, A. M. (2011). High phenylalanine levels directly affect mood and sustained attention in adults with phenylketonuria: A randomised, double-blind, placebo-controlled, crossover trial. Journal of Inherited Metabolic Disease, 34, 165171. https://doi.org/10.1007/s10545-010-9253-9 CrossRefGoogle ScholarPubMed
Vockley, J., Andersson, H. C., Antshel, K. M., Braverman, N. E., Burton, B. K., Frazier, D. M., Mitchell, J., Smith, W. E., Thompson, B. H., & Berry, S. A. (2014). Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genetics in Medicine, 16, 188200. https://doi.org/10.1038/gim.2013.157 CrossRefGoogle ScholarPubMed
Waisbren, S. E., Noel, K., Fahrbach, K., Cella, C., Frame, D., Dorenbaum, A., & Levy, H. (2007). Phenylalanine blood levels and clinical outcomes in phenylketonuria: A systematic literature review and meta-analysis. Molecular Genetics and Metabolism, 92, 6370. https://doi.org/10.1016/j.ymgme.2007.05.006 CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. The Psychological Corporation: Harcourt Brace & Company.Google Scholar
Wechsler, D. (2008). Wechsler Adult Intelligence Scale—Fourth Edition (WAIS-IV). American Psychological Association.Google Scholar
Weglage, J., Fromm, J., van Teeffelen-Heithoff, A., Möller, H. E., Koletzko, B., Marquardt, T., Rutsch, F., & Feldmann, R. (2013). Neurocognitive functioning in adults with phenylketonuria: Results of a long term study. Molecular Genetics and Metabolism, 110, S44S48. https://doi.org/10.1016/j.ymgme.2013.08.013 CrossRefGoogle ScholarPubMed
Weir, J. M., Zakama, A., & Rao, U. (2012). Developmental risk I: Depression and the developing brain. Child and Adolescent Psychiatric Clinics of North America, 21, 237259. https://doi.org/10.1016/j.chc.2012.01.004 CrossRefGoogle Scholar
Welsh, M. C., Pennington, B. F., Ozonoff, S., Rouse, B., & McCabe, E. R. B. (1990). Neuropsychology of early-treated phenylketonuria: specific executive function deficits. Child Development, 61, 1697. https://doi.org/10.2307/1130832 CrossRefGoogle ScholarPubMed
Wesonga, E., Shimony, J. S., Rutlin, J., Grange, D. K., & White, D. A. (2016). Relationship between age and white matter integrity in children with phenylketonuria. Molecular Genetics and Metabolism Reports, 7, 4549. https://doi.org/10.1016/j.ymgmr.2016.03.003 CrossRefGoogle ScholarPubMed
White, D. A., Nortz, M. J., Mandernach, T., Huntington, K., & Steiner, R. D. (2002). Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. Journal of the International Neuropsychological Society, 8, 111. https://doi.org/10.1017/S135561770102001X CrossRefGoogle ScholarPubMed
Supplementary material: File

Clocksin et al. supplementary material

Figures S1-S5

Download Clocksin et al. supplementary material(File)
File 1 MB