Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T21:14:02.864Z Has data issue: false hasContentIssue false

Altered adaptive but not veridical decision-making in substance dependent individuals

Published online by Cambridge University Press:  23 January 2006

ANTONIO VERDEJO-GARCÍA
Affiliation:
Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Universidad de Granada, Granada, Spain Instituto de Neurociencias Federico Olóriz, Universidad de Granada, Granada, Spain
RAQUEL VILAR-LÓPEZ
Affiliation:
Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Universidad de Granada, Granada, Spain Departamento de Medicina Nuclear, Hospital Universitario Virgen De Las Nieves, Granada, Spain
MIGUEL PÉREZ-GARCÍA
Affiliation:
Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Universidad de Granada, Granada, Spain Instituto de Neurociencias Federico Olóriz, Universidad de Granada, Granada, Spain
KENNETH PODELL
Affiliation:
Departments of Psychiatry, Henry Ford Health System and Wayne State University, Detroit, Michigan
ELKHONON GOLDBERG
Affiliation:
Department of Neurology, New York University School of Medicine, New York, New York

Abstract

Drug addiction is associated with impaired judgment in unstructured situations in which success depends on self-regulation of behavior according to internal goals (adaptive decision-making). However most executive measures are aimed at assessing decision-making in structured scenarios, in which success is determined by external criteria inherent to the situation (veridical decision-making). The aim of this study was to examine the performance of Substance Abusers (SA, n = 97) and Healthy Comparison participants (HC, n = 81) in two behavioral tasks that mimic the uncertainty inherent in real-life decision-making: the Cognitive Bias Task (CB) and the Iowa Gambling Task (IGT) (administered only to SA). A related goal was to study the interdependence between performances on both tasks. We conducted univariate analyses of variance (ANOVAs) to contrast the decision-making performance of both groups; and used correlation analyses to study the relationship between both tasks. SA showed a marked context-independent decision-making strategy on the CB's adaptive condition, but no differences were found on the veridical conditions in a subsample of SA (n = 34) and HC (n = 22). A high percentage of SA (75%) also showed impaired performance on the IGT. Both tasks were only correlated when no impaired participants were selected. Results indicate that SA show abnormal decision-making performance in unstructured situations, but not in veridical situations. (JINS, 2006, 12, 90–99.)

Type
Research Article
Copyright
© 2006 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adinoff, D., Devous, M.D., Cooper, D.B., Best, S.E., Chandler, P., Harris, T., Cervin, C.A., & Cullum, C.M. (2003). Resting regional cerebral blood flow and gambling task performance in cocaine-dependent subjects and healthy comparison subjects. American Journal of Psychiatry, 160, 18921894.CrossRefGoogle Scholar
Aihara, M., Aoyagi, K., Goldberg, E., & Nakazawa, S. (2003). Age shifts frontal cortical control in a cognitive bias task from right to left: Part I. Neuropsychological study. Brain and Development, 25, 555559.Google Scholar
American Psychiatric Association (1994). Diagnostic and Statistical Manual for Mental Disorders (4th ed.). Washington, DC: American Psychiatric Association Press.
Barkley, R.A. (2001). The executive functions and self-regulation: An evolutionary neuropsychological perspective. Neuropsychology Review, 11, 129.Google Scholar
Bechara, A. & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40, 16751689.CrossRefGoogle Scholar
Bechara, A., Damasio, H., & Damasio, A.R. (2000). Emotion, decision-making and the orbitofrontal cortex. Cerebral Cortex, 10, 295307.Google Scholar
Bechara, A., Damasio, H., & Damasio, A.R. (2003). Role of the amygdala in decision-making. Annals of the New York Academy of Sciences, 985, 356369.Google Scholar
Bechara, A., Damasio, A.R., Damasio, H., & Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715.CrossRefGoogle Scholar
Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S.W., & Nathan, P.E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376389.Google Scholar
Bechara, A. & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152162.CrossRefGoogle Scholar
Bjork, J.M., Hommer, D.W., Grant, S.J., & Danube, C. (2004). Impulsivity in abstinent alcohol-dependent patients: Relation to control subjects and type 1-/type 2-like traits. Alcohol, 34, 133150.CrossRefGoogle Scholar
Bolla, K.I., Eldreth, D.A., London, E.D., Kiehl, K.A., Mouratidis, M., Contoreggi, C., Matochik, J.A., Kurian, V., Cadet, J.L., Kimes, A.S., Funderburk, F.R., & Ernst, M. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage, 19, 10851094.Google Scholar
Bowman, C.H. & Turnbull, O.H. (2003). Real versus facsimile reinforcers on the Iowa Gambling Task. Brain and Cognition, 53, 207210.CrossRefGoogle Scholar
Briggs, G.G. & Nebes, R.D. (1975). Patterns of hand preference in a student population. Cortex, 11, 230238.CrossRefGoogle Scholar
Daglish, M.R.C., Weinstein, A., Malizia, A.L., Wilson, S., Melichar, J.K., Britten, S., Brewer, C., Lingford-Hughes, A., Myles, J.S., Grasby, P., & Nutt, D.J. (2001). Changes in regional cerebral blood flow elicited by craving memories in abstinent opiate-dependent subjects. American Journal of Psychiatry, 158, 16801686.Google Scholar
Ernst, M., Bolla, K., Mouratidis, M., Contoreggi, C., Matochik, J.A., Kurian, V., Cadet, J.-L., Kimes, A.S., & London, E.D. (2002). Decision-making in a risk-taking task: A PET study. Neuropsychopharmacology, 26, 682691.Google Scholar
Evans, C.E.Y., Kemish, K., & Turnbull, O.H. (2004). Paradoxical effects of education on the Iowa Gambling Task. Brain and Cognition, 54, 240244.Google Scholar
Franken, I.H.A., Stam, C.J., Hendriks, V.M., & van den Brink, W. (2004). Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients. Neuropsychobiology, 49, 105110.Google Scholar
Franklin, T.R., Acton, P.D., Maldjian, J.A., Gray, J.D., Croft, J.R., Dackis, C.A., O'Brien, C.P., & Childress, A.R. (2002). Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry, 51, 134142.CrossRefGoogle Scholar
George, M.S., Anton, R.F., Bloomer, C., Teneback, C., Drobes, D.J., Lorberbaum, J.P., Nahas, Z., & Vincent, D.J. (2001). Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Archives of General Psychiatry, 58, 345352.CrossRefGoogle Scholar
Goldberg, E. (2001). The executive brain: Frontal lobes and the civilized mind. New York: Oxford University Press.
Goldberg, E. & Podell, K. (1999). Adaptive versus veridical decision making and the frontal lobes. Journal of Consciousness and Cognition, 8, 364377.CrossRefGoogle Scholar
Goldberg, E. & Podell, K. (2000). Adaptive decision making, ecological validity, and the frontal lobes. Journal of Clinical and Experimental Neuropsychology, 22, 5668.Google Scholar
Goldberg, E., Podell, K., Harner, R., Riggio, S., & Lovell, M. (1994). Cognitive bias, functional cortical geometry, and the frontal lobes: Laterality, sex, and handedness. Journal of Cognitive Neuroscience, 6, 276296.Google Scholar
Goldstein, R.Z., Leskovjan, A.C., Hoff, A.L., Hitzemann, R., Bashan, F., Khalsa, S.S., Wang, G.-J., Fowler, J.S., & Volkow, N.D. (2004). Severity of neuropsychological impairment in cocaine and alcohol addiction: Association with metabolism in the prefrontal cortex. Neuropsychologia, 42, 14471458.CrossRefGoogle Scholar
Grant, S., Contoreggi, C., & London, E.D. (2000). Drug abusers show impaired performance in a laboratory test of decision-making. Neuropsychologia, 38, 11801187.CrossRefGoogle Scholar
Laakso, M.P., Gunning-Dixon, F., Vaurio, O., Repo-Tiihonen, E., Soininen, H., & Tiihonen, J. (2002). Prefrontal volumes in habitually violent subjects with antisocial personality disorder and type 2 alcoholism. Psychiatry Research Neuroimaging, 114, 95102.Google Scholar
Levine, B., Dawson, D., Boutet, I., Schwartz, M.L., & Stuss, D.T. (2000). Assessment of strategic self-regulation in traumatic brain injury: Its relationship to injury severity and psychosocial outcome. Neuropsychology, 14, 491500.Google Scholar
Liu, X., Matochick, J.A., Cadet, J., & London E.D. (1998). Smaller volume of prefrontal lobe in polysubstance abusers: A magnetic resonance imaging study. Neuropsychopharmacology, 18, 243252.CrossRefGoogle Scholar
Mintzer, M.Z. & Stitzer, M.L. (2002). Cognitive impairment in methadone maintenance patients. Drug and Alcohol Dependence, 67, 4151.CrossRefGoogle Scholar
Monterosso, J., Ehrman, R., Napier, K.L., O'Brien, C.P, & Childress, A.R. (2001). Three decision-making tasks in cocaine-dependent patients: Do they measure the same construct? Addiction, 96, 18251837.Google Scholar
Paulus, M.P., Hozack, N., Frank, L., Brown, G.G., & Schuckit, M.A. (2003). Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biological Psychiatry, 53, 6574.CrossRefGoogle Scholar
Pezawas, L., Fisher, G., Podreka, I., Schindler, S., Brüke, T., Jagsch, R., Thurnher, M., & Kasper, S. (2002). Opioid addiction changes cerebral blood flow symmetry. Neuropsychobiology, 45, 6773.CrossRefGoogle Scholar
Podell, K. (1992). Lateralization of functions in the prefrontal cortex. Doctoral disseration. City University of New York.
Podell, K., Lovell, M., & Goldberg, E. (2001). Lateralization of frontal lobe functions. In S. Salloway et al. (Eds.), The frontal lobes and neuropsychiatric illness (pp. 83100). Washington, DC: American Psychiatric Press.
Podell, K., Lovell, M., Zimmerman, M., & Goldberg, E. (1995). The cognitive bias task and lateralized frontal lobe functions in males. Journal of Neuropsychiatry and Clinical Neurosciences, 4, 491501.Google Scholar
Schutter, D.J.L.G., de Haan, E.H.F., & van Honk, J. (2004). Anterior asymmetrical alpha activity predicts Iowa gambling performance: Distinctly but reversed. Neuropsychologia, 42, 939943.Google Scholar
Shimoyama, H., Aihara, M., Fukuyama, H., Hashikawa, K., Aoyagi, K., Goldberg, E., & Nakazawa, S. (2004). Context-dependent reasoning in a cognitive bias task Part II. SPECT activation study. Brain and Development, 26, 3742.Google Scholar
Stratta, P., Daneluzzo, E., Bustini, M., Prosperini, P.L., & Rossi, A. (1999). Schizophenic patients use context-independent reasoning more often than context-dependent reasoning as measured by the Cognitive Bias Task (CB): A controlled study. Schizophrenia Research, 37, 4551.Google Scholar
Tapert, S.F., Brown, G.G., Baratta, M.V., & Brown, S.A. (2004). fMRI BOLD response to alcohol stimuli in alcohol dependent young women. Addictive Behaviors, 29, 3350.Google Scholar
Tranel, D., Bechara, A., & Denburg, N.L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex, 38, 589612.Google Scholar
Verdejo-García, A., Aguilar de Arcos, F., & Pérez-García, M. (2004). Alteraciones de los procesos de toma de decisiones vinculados al córtex prefrontal ventromedial en pacientes drogodependientes. Revista de Neurología, 38, 601606.Google Scholar
Volkow, N.D., Fowler, J.S., & Wang, G.-J. (2004). The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology, 47, 313.Google Scholar