Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T04:36:16.510Z Has data issue: false hasContentIssue false

Presurgical cognitive deficits in patients receiving coronary artery bypass graft surgery

Published online by Cambridge University Press:  27 August 2003

Katherine P. Rankin*
Affiliation:
University of California at San Francisco Memory and Aging Center, San Francisco, California
Gary S. Kochamba
Affiliation:
Southern California Kaiser Permanente Medical Group, Pasadena, California
Kyle B. Boone
Affiliation:
Harbor UCLA Medical Center, Torrance, California
Diana B. Petitti
Affiliation:
Southern California Kaiser Permanente Medical Group, Pasadena, California
J. Galen Buckwalter
Affiliation:
Southern California Kaiser Permanente Medical Group, Pasadena, California
*
Reprint requests to: Katherine P. Rankin, Ph.D., UCSF Memory and Aging Center, 350 Parnassus Avenue, Suite 706, San Francisco, CA 94143-1207. E-mail: [email protected]

Abstract

Coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass (CPB) can produce a higher incidence of neuropsychological complications than other types of highly invasive noncardiac vascular surgery. Cognitive complications most likely arise from either embolization or hypoxia. An alternative surgical procedure has been developed that allows CABG to be performed without stopping the heart (“off-pump” CABG, or OPCABG). This study examined the neuropsychological performance of patients undergoing OPCABG, hypothesizing that patients undergoing OPCABG would show fewer cognitive deficits than patients whose hearts were stopped. A 1-hr neuropsychological battery was administered preoperatively to 43 patients before prospective randomization to either CPB CABG or OPCABG, and again to 34 of those patients 2 to 3 months postoperatively by an examiner blind to surgical condition. Neuropsychological status did not change 2.5 months postsurgically in either OPCABG or CABG groups. However, both groups showed dramatic presurgical cognitive deficits in multiple domains, particularly verbal memory and psychomotor speed. This corroborates previous research suggesting that patients requiring CABG surgery may evidence significant presurgical cognitive deficits as a result of existing vascular disease. (JINS, 2003, 9, 913–924.)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arom, K.V., Emery, R.W., Nicoloff, D.M., Flavin, T.F., & Emery, A.M. (1997). Minimally invasive direct coronary artery bypass grafting: Experimental and clinical experiences. Annals of Thoracic Surgery, 63, S48S52.10.1016/S0003-4975(97)00136-7CrossRefGoogle ScholarPubMed
Baird, D.L., Murkin, J.M., & Lee, D.L. (1997). Neurologic findings in coronary artery bypass patients: Perioperative or preexisting? Journal of Cardiothoracic and Vascular Anesthesia, 1196, 694698.10.1016/S1053-0770(97)90159-2CrossRefGoogle Scholar
Barbut, D. & Caplan, L.R. (1997). Brain complications of cardiac surgery. Current Problems in Cardiology, 22, 449480.10.1016/S0146-2806(97)80012-6CrossRefGoogle ScholarPubMed
Barbut, D., Hinton, R.B., & Szatrowski, T.P. (1994). Cerebral emboli detected during bypass surgery are associated with clamp removal. Stroke, 25, 23982402.10.1161/01.STR.25.12.2398CrossRefGoogle ScholarPubMed
Baris, R.R., Israel, A.L., Amory, D.W., & Benni, P. (1995). Regional cerebral oxygenation during cardiopulmonary bypass. Perfusion, 10, 245248.10.1177/026765919501000407CrossRefGoogle ScholarPubMed
Benton, A.L., Hamsher, K.D., & Sivan, A.B. (1994). Multilingual aphasia examination. San Antonio, Texas: Psychological Corporation.Google Scholar
Blauth, C.I. (1995). Macroemboli and microemboli during cardiopulmonary bypass. Annals of Thoracic Surgery, 59, 13001303.10.1016/0003-4975(95)00105-TCrossRefGoogle ScholarPubMed
Blumenthal, J.A., Madden, D.J., Burker, E.J., Croughwell, N., Schniebol, S., Smith, R., White, W.D., Hlatky, M., & Reves, J.G. (1991). A preliminary study of the effects of cardiac procedures on cognitive performance. International Journal of Psychosomatics, 38, 1316.Google ScholarPubMed
Boone, K.B. (2000). Clinical neuropsychological assessment of executive functions: Impact of age, education, gender, intellectual level, and vascular status on executive test scores. In Miller, B. & Cummings, J.L. (Eds.), The frontal lobes (pp. 247260). New York: Guilford Press.Google Scholar
Boone, K.B., Lesser, I.M., Hill-Gutierrez, E.H., Berman, N.G., & D'Elia, L.F. (1993). Rey–Osterrieth complex figure performance in healthy, older adults: Relationship to age, education, sex, and IQ. Clinical Neuropsychologist, 7, 2228.10.1080/13854049308401884CrossRefGoogle Scholar
Bornstein, R.A. (1985). Normative data on selected neuropsychological measures from a nonclinical sample. Journal of Clinical Psychology, 41, 651658.10.1002/1097-4679(198509)41:5<651::AID-JCLP2270410511>3.0.CO;2-C3.0.CO;2-C>CrossRefGoogle Scholar
Borst, C., Jansen, E.W.L., Tulleken, C.A.F., Grundeman, P.F., Beck, H.J.M., Van Dongen, J.W.F., Hodde, K.C., & Bredee, J.J. (1996). Coronary artery bypass grafting without cardiopulmonary bypass and without interruption of native coronary flow using a novel anastomosis site restraining device (“Octopus”). Journal of the American College of Cardiology, 27, 13561364.10.1016/0735-1097(96)00039-3CrossRefGoogle ScholarPubMed
Braekken, S.K., Reinvang, I., Russell, D., Brucher, R., & Svennevig, J.L. (1998). Association between intraoperative cerebral microembolic signals and postoperative neuropsychological deficit: Comparison between patients with cardiac valve replacement and patients with coronary artery bypass grafting. Journal of Neurology, Neurosurgery, and Psychiatry, 65, 573576.10.1136/jnnp.65.4.573CrossRefGoogle ScholarPubMed
Calafiore, A.M., Teodori, G., Di Giammarco, G., Vitolla, G., Iaco, A., Iovino, T., Cirmeni, S., Bosco, G., Scipioni, G., & Gallina, S. (1997). Minimally invasive coronary artery bypass grafting on a beating heart. Annals of Thoracic Surgery, 63, S72S75.10.1016/S0003-4975(97)00426-8CrossRefGoogle ScholarPubMed
Chabot, R.J., Gugino, L.D., Aglio, L.S., Maddi, R., & Cote, W. (1997). QEEG and neuropsychological profiles of patients after undergoing cardiopulmonary bypass surgical procedures. Clinical Electroencephalography, 28, 98105.10.1177/155005949702800207CrossRefGoogle ScholarPubMed
Christakis, G.T., Abel, J.G., & Lichtenstein, S.V. (1995). Neurological outcomes and cardiopulmonary temperature: A clinical review. Journal of Cardiac Surgery, 10, 475480.10.1111/j.1540-8191.1995.tb00680.xCrossRefGoogle ScholarPubMed
Croughwell, N.D., Newman, M.F., Blumenthal, J.A., White, W.D., Lewis, J.B., Frasco, P.E., Smith, L.R., Thyrum, E.A., Hurwitz, B.J., Leone, B.J., Schell, R.M., & Reves, J.G. (1994). Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass. Annals of Thoracic Surgery, 58, 17021708.10.1016/0003-4975(94)91666-7CrossRefGoogle ScholarPubMed
Crum, R.M., Anthony, J.C., Bassett, S.S., & Folstein, M.F. (1993). Population-based norms for the Mini-Mental State Examination by age and educational level. Journal of the American Medical Association, 269, 23862391.10.1001/jama.1993.03500180078038CrossRefGoogle ScholarPubMed
Delis, D.C., Massman, P.J., Kaplan, E., McKee, R., Kramer, J.H., & Gettman, D. (1991). Alternate form of the California Verbal Learning Test: Development and reliability. Clinical Neuropsychologist, 5, 154162.10.1080/13854049108403299CrossRefGoogle Scholar
Demick, J. & Harkins, D. (1997). Role of cognitive style in the driving skills of young, middle-aged, and older adults. American Association of Retired Persons (AARP) Andrus Foundation Final Grant Report. Washington, D.C.Google Scholar
Derogatis, L.R. (1975). SCL-90-R Administration, Scoring, and Procedures Manual—II for the Revised Version. Towson, Maryland: Clinical Psychometric Research.Google Scholar
Diegeler, A., Hirsch, R., Schneider, F., Schilling, L., Falk, V., Rauch, T., & Mohr, F.W. (2000). Neuromonitoring and neurocognitive outcome in off-pump versus conventional coronary bypass operation. Annals of Thoracic Surgery, 69, 11621166.10.1016/S0003-4975(99)01574-XCrossRefGoogle ScholarPubMed
Engelhardt, W., Dierks, T., Pause, M., & Hartung, E. (1996). Early cerebral functional outcome after coronary artery bypass surgery using different acid–base management during hypothermic cardiopulmonary bypass. Acta Anaesthesiologica Scandinavica, 40, 458465.Google ScholarPubMed
Gill, I.S., FitzGibbon, G.M., Higginson, L.A.J., Valji, A., & Keon, W.J. (1997). Minimally invasive coronary artery bypass: A series with early qualitative angiographic follow-up. Annals of Thoracic Surgery, 64, 710714.10.1016/S0003-4975(97)00756-XCrossRefGoogle ScholarPubMed
Gill, R. & Murkin, J.M. (1996). Neuropsychologic dysfunction after cardiac surgery: What is the problem? Journal of Cardiothoracic and Vascular Anesthesia, 10, 9198.10.1016/S1053-0770(96)80183-2CrossRefGoogle Scholar
Grundeman, P.F., Borst, C., Van Herwaarden, J.A., Beck, H.J.M., & Jansen, E.W.L. (1997). Hemodynamic changes during displacement of the beating heart by the Utrecht octopus method. Annals of Thoracic Surgery, 63, S88S92.10.1016/S0003-4975(97)00339-1CrossRefGoogle ScholarPubMed
Hamby, S.L., Wilkins, J.W., & Barry, N.S. (1993). Organizational quality on the Rey-Osterrieth and Taylor Complex Figure Tests: A new scoring system. Psychological Assessment, 5, 2733.10.1037/1040-3590.5.1.27CrossRefGoogle Scholar
Harris, D.N.F., Bailey, S.M., & Smith, P.L.C. (1993). Brain swelling in the first hour after coronary artery bypass surgery. Lancet, 342, 586587.10.1016/0140-6736(93)91412-FCrossRefGoogle ScholarPubMed
Harrison, M.J.G. (1995). Neurologic complications of coronary artery bypass grafting: Diffuse or focal ischemia? Annals of Thoracic Surgery, 59, 13561358.10.1016/0003-4975(95)00056-QCrossRefGoogle Scholar
Heyer, E.J., Adams, D.C., Delphin, E., McMahon, D.J., Steneck, S.D., Oz, M.C., Michler, R.E., & Rose, E.A. (1997). Cerebral dysfunction after coronary artery bypass grafting with mild or moderate hypothermia. Journal of Thoracic and Cardiovascular Surgery, 114, 270277.10.1016/S0022-5223(97)70155-7CrossRefGoogle ScholarPubMed
Jacobs, A., Neveling, M., Horst, M., Ghaemi, M., Kessler, J., Eichstaedt, H., Rudolf, J., Model, P., Bonner, H., de Vivie, E.R., & Heiss, W.D. (1998). Alterations of neuropsychological function and cerebral glucose metabolism after cardiac surgery are not related only to intraoperative microembolic events. Stroke, 29, 660667.10.1161/01.STR.29.3.660CrossRefGoogle Scholar
Jansen, E.W.L., Grundeman, P.F., Borst, C., Eefting, F., Diephius, J., Nierich, A., Lahpor, J.R., & Bredee, J.J. (1997). Less invasive off-pump CABG using a suction device for immobilization: The “octopus method”. European Journal of Cardio-Thoracic Surgery, 12, 406412.10.1016/S1010-7940(97)00200-5CrossRefGoogle Scholar
Kochamba, G.S., Yun, K.L., Pfeffer, T.A., Sintek, C.F., & Khonsari, S. (2000). Pulmonary abnormalities after coronary arterial bypass grafting operation: Cardiopulmonary bypass versus mechanical stabilization. Annals of Thoracic Surgery, 69, 14661470.10.1016/S0003-4975(00)01142-5CrossRefGoogle ScholarPubMed
Lee, G.P., Strauss, E., Loring, D.W., McCloskey, L., & Haworth, J.M. (1997). Sensitivity of figural fluency on the Five-Point Test to focal neurological disease. Clinical Neuropsychologist, 11, 5968.10.1080/13854049708407030CrossRefGoogle Scholar
McDaid, C.M., Lewis, S.A., McMurray, T., & Phillips, S.A. (1994). Heart surgery: What are the neuropsychological consequences? Irish Journal of Psychology, 15, 110125.10.1080/03033910.1994.10557998CrossRefGoogle Scholar
McLean, R.F. & Wong, B.I. (1996). Normothermic versus hypothermic cardiopulmonary bypass: Central nervous system outcomes. Journal of Cardiothoracic and Vascular Anesthesia, 10, 4553.10.1016/S1053-0770(96)80178-9CrossRefGoogle ScholarPubMed
McLean, R.F., Wong, B.I., Naylor, C.D., Snow, W.G., Harrington, E.M., Gawel, M., & Fremes, S.E. (1994). Cardiopulmonary bypass, temperature, and central nervous system dysfunction. Circulation, 90, II250II255.Google ScholarPubMed
Mills, S.A. (1995). Risk factors for cerebral injury and cardiac surgery. Annals of Thoracic Surgery, 59, 12961299.10.1016/0003-4975(95)00054-OCrossRefGoogle ScholarPubMed
Moody, D.M., Brown, W.R., Challa, V.R., Stump, D.A., Reboussin, D.M., & Legault, C. (1995). Brain microemboli associated with cardiopulmonary bypass: A histologic and magnetic resonance imaging study. Annals of Thoracic Surgery, 59, 13041307.10.1016/0003-4975(95)00057-RCrossRefGoogle ScholarPubMed
Mora, C.T., Henson, M.B., Weintraub, W.S., Murkin, J.M., Martin, T.D., Craver, J.M., Gott, J.P., & Guyton, R.A. (1996). The effect of temperature management during cardiopulmonary bypass on neurologic and neuropsychologic outcomes in patients undergoing coronary revascularization. Journal of Thoracic and Cardiovascular Surgery, 112, 514522.10.1016/S0022-5223(96)70280-5CrossRefGoogle ScholarPubMed
Murkin, J.M., Newman, S.P., Stump, D.A., & Blumenthal, J.A. (1995). Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Annals of Thoracic Surgery, 59, 12891295.10.1016/0003-4975(95)00106-UCrossRefGoogle ScholarPubMed
Mutch, W.A., Ryner, L.N., Kozlowki, P., Scarth, G., Warrian, K., Lefevre, G.R., Wong, T.D., Thiessen, D.B., Girling, L.G., Doiron, L., McCudden, C., & Saunders, J.K. (1997). Cerebral hypoxia during cardiopulmonary bypass: A magnetic resonance imaging study. Annals of Thoracic Surgery, 64, 695701.10.1016/S0003-4975(97)00634-6CrossRefGoogle ScholarPubMed
Nathan, H.J., Munson, J., Wells, G., Mundi, C., Balaa, F., & Wynands, J.E. (1995). The management of temperature during cardiopulmonary bypass: Effect on neuropsychological outcome. Journal of Cardiac Surgery, 10, 481487.10.1111/j.1540-8191.1995.tb00681.xCrossRefGoogle ScholarPubMed
Newman, M.F., Croughwell, N.D., Blumenthal, J.A., White, W.D., Lewis, J.B., Smith, L.R., Frasco, P., Towner, E.A., Schell, R.M., Hurwitz, B.J., & Reves, J.G. (1994). Effect of aging on cerebral autoregulation during cardiopulmonary bypass: Association with postoperative cognitive dysfunction. Circulation, 90, II243II249.Google ScholarPubMed
Newman, M.F., Croughwell, N.D., Blumenthal, J.A., Lowry, E., White, W.D., Spillane, W., Davis, R.D., Glower, D.D., Smith, L.R., Mahanna, E.P., & Reves, J.G. (1995a). Predictors of cognitive decline after cardiac operation. Annals of Thoracic Surgery, 59, 13261330.10.1016/0003-4975(95)00076-WCrossRefGoogle Scholar
Newman, M.F., Kramer, D., Croughwell, N.D., Sanderson, I., Blumenthal, J.A., White, W.D., Smith, L.R., Towner, E.A., & Reves, J.G. (1995b). Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery. Anesthesia and Analgesia, 81, 236242.Google Scholar
Newman, M.F., Croughwell, N.D., Blumenthal, J.A., Lowry, E., White, W.D., & Reves, J.G. (1996). Cardiopulmonary bypass and the central nervous system: Potential for cerebral protection. Journal of Clinical Anesthesiology, 8, 53S60S.10.1016/S0952-8180(96)90013-6CrossRefGoogle ScholarPubMed
Newman, M.F., Kirchner, J.L., Phillips-Bute, B., Gaver, V., Grocott, H., Jones, R.H., Mark, D.B., Reves, J.G., & Blumenthal, J.A. (2001). Longitudinal assessment of neurocognitive function after coronary artery bypass surgery. New England Journal of Medicine, 344, 395402.10.1056/NEJM200102083440601CrossRefGoogle ScholarPubMed
Newman, S., Smith, P., Treasure, T., Joseph, P., Ell, P., & Harrison, M. (1987). Acute neuropsychological consequences of coronary artery bypass surgery. Current Psychological Research and Reviews, 6, 115124.10.1007/BF02686616CrossRefGoogle Scholar
Nussmeier, N.A. (1994). Neuropsychiatric complications of cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia, 8, 1318.10.1016/1053-0770(94)90611-4CrossRefGoogle ScholarPubMed
Plourde, G., Leduc, A.S., Morin, J.E., DeVarennes, B., Latter, D., Symes, J., Robbins, R., Fosset, N., Couture, L., & Ptito, A. (1997). Temperature during cardiopulmonary bypass for coronary artery operations does not influence postoperative function: A prospective, randomized trial. Journal of Thoracic and Cardiovascular Surgery, 114, 123128.10.1016/S0022-5223(97)70125-9CrossRefGoogle Scholar
Pugsley, W., Klinger, L., Paschalis, C., Treasure, T., Harrison, M., & Newman, S. (1994). The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke, 25, 13931399.10.1161/01.STR.25.7.1393CrossRefGoogle ScholarPubMed
Regragui, I., Birdi, I., Izzat, M.B., Black, A.M.S., Lopatatzidis, A., Day, C.J.E., Gardner, F., Bryan, A.J., & Anglini, G.D. (1996). The effects of cardiopulmonary bypass temperature on neuropsychologic outcome after coronary artery operations: A prospective randomized trial. Journal of Thoracic and Cardiovascular Surgery, 112, 10361045.10.1016/S0022-5223(96)70105-8CrossRefGoogle ScholarPubMed
Ross, T.P., Lichtenberg, P.A., & Christensen, B.K. (1995). Normative data on the Boston Naming Test for elderly adults in a demographically diverse medical sample. Clinical Neuropsychologist, 9, 321325.10.1080/13854049508400496CrossRefGoogle Scholar
Siesjo, B.K., Zhao, Q., Pahlmark, K., Siesjo, P., Katsura, K., & Folbergrova, J. (1995). Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Annals of Thoracic Surgery, 59, 13161320.10.1016/0003-4975(95)00077-XCrossRefGoogle ScholarPubMed
Sotaniemi, K.A. (1995). Long-term neurologic outcome after cardiac operation. Annals of Thoracic Surgery, 59, 13361339.10.1016/0003-4975(95)00095-3CrossRefGoogle ScholarPubMed
Spreen, O. & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press.Google Scholar
Stump, D.A., Tegler, C.H., & Rogers, A.T. (1993). Neuropsychological deficits are associated with the number of emboli detected during cardiac surgery. Stroke, 24, 509.Google Scholar
Subramanian, V.A. (1997). Less invasive arterial CABG on a beating heart. Annals of Thoracic Surgery, 63, S68S71.10.1016/S0003-4975(97)00417-7CrossRefGoogle ScholarPubMed
Tombaugh, T.N. & Hubley, A.M. (1997). The 60-item Boston Naming Test: Norms for cognitively intact adults aged 25 to 88 years. Journal of Clinical and Experimental Neuropsychology, 19, 922932.10.1080/01688639708403773CrossRefGoogle ScholarPubMed
Tombaugh, T.N., Faulkner, P., & Hubley, A.M. (1992). Effects of age on the Rey–Osterrieth and Taylor complex figures: Test–retest data using an intentional learning paradigm. Journal of Clinical and Experimental Neuropsychology, 14, 647661.10.1080/01688639208402853CrossRefGoogle ScholarPubMed
Undar, A., Helfrich, C.M., Johnson, S.B., & Calhoon, J.H. (1998). Comment: “Temperature during cardiopulmonary bypass for coronary artery operations does not influence postoperative cognitive function: A prospective, randomized trial.” Journal of Thoracic and Cardiovascular Surgery, 115, 482483.Google Scholar
Van der Linden, J. (1995). Cerebral hemodynamics after low-flow versus no-flow procedures. Annals of Thoracic Surgery, 59, 13211325.10.1016/0003-4975(95)00173-ICrossRefGoogle ScholarPubMed
Van Dijk, D., Nierich, A.P., Jansen, E.W.L., Nathoe, H.M., Suyker, W.J.L., Diephuis, J.C., van Boven, W.J., Borst, C., Buskens, E., Grobbee, D.E., De Medina, E.O.R., & De Jaegere, P.P.T. (2001). Early outcome after off-pump versus on-pump coronary bypass surgery: Results from a randomized study. Circulation, 104, 17611766.10.1161/hc4001.097036CrossRefGoogle ScholarPubMed
Van Dijk, D., Jansen, E.W.L., Hijjman, R., Nierich, A.P., Diephuis, J.C., Moons, K.G.M., Lahpor, J.R., Borst, C., Keizer, A.M.A., Nathoe, H.M., Grobbee, D.E., De Jaegere, P.P.T., & Kalkman, C.J. (2002). Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: A randomized trial. Journal of the American Medical Association, 287, 14051408.10.1001/jama.287.11.1405CrossRefGoogle ScholarPubMed
Vingerhoets, G., Jannes, C., De Soete, G., & Van Nooten, G. (1996a). Prospective evaluation of verbal memory performance after cardiopulmonary bypass surgery. Journal of Clinical and Experimental Neuropsychology, 18, 187196.10.1080/01688639608408274CrossRefGoogle Scholar
Vingerhoets, G., Van Nooten, G., & Jannes, C. (1996b). Effect of asymptomatic carotid artery disease on cognitive outcome after cardiopulmonary bypass. Journal of the International Neuropsychological Society, 2, 236239.10.1017/S135561770000117XCrossRefGoogle Scholar
Vingerhoets, G., Van Nooten, G., & Jannes, C. (1997). Neuropsychological impairment in candidates for cardiac surgery. Journal of the International Neuropsychological Society, 3, 480484.10.1017/S1355617797004803CrossRefGoogle Scholar
Vingerhoets, G., Lanoo, E., & Wolters, M. (1998). Comparing the Rey–Osterrieth and Taylor Complex Figures: Empirical data and meta-analysis. Psychologica-Belgica, 38, 109119Google Scholar
Wilson, B. (1996). Cognitive functioning of adult survivors of cerebral hypoxia. Brain Injury, 10, 863874.10.1080/026990596123846CrossRefGoogle ScholarPubMed