Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T10:19:18.523Z Has data issue: false hasContentIssue false

Poor Sleep Quality and Compromised Visual Working Memory Capacity

Published online by Cambridge University Press:  29 April 2019

Weizhen Xie
Affiliation:
Department of Psychology, University of California, Riverside, California, USA National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
Anne Berry*
Affiliation:
Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
Cindy Lustig
Affiliation:
Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
Patricia Deldin
Affiliation:
Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
Weiwei Zhang*
Affiliation:
Department of Psychology, University of California, Riverside, California, USA
*
*Correspondence and reprint requests to: Weiwei Zhang, 900 University Ave., Riverside, CA 92521. E-mail: [email protected]; Anne Berry, 132 Barker Hall, Berkeley, CA 94720. E-mail: [email protected]
*Correspondence and reprint requests to: Weiwei Zhang, 900 University Ave., Riverside, CA 92521. E-mail: [email protected]; Anne Berry, 132 Barker Hall, Berkeley, CA 94720. E-mail: [email protected]

Abstract

Objectives: Reduction in the amount of information (storage capacity) retained in working memory (WM) has been associated with sleep loss. The present study examined whether reduced WM capacity is also related to poor everyday sleep quality and, more importantly, whether the effects of sleep quality could be dissociated from the effects of depressed mood and age on WM. Methods: In two studies, WM was assessed using a short-term recall task, producing behavioral measures for both the amount of retained WM information (capacity) and how precise the retained WM representations were (precision). Self-report measures of sleep quality and depressed mood were obtained using questionnaires. Results: In a sample of college students, Study 1 found that poor sleep quality and depressed mood could independently predict reduced WM capacity, but not WM precision. Study 2 generalized these sleep- and mood-related WM capacity effects to a community sample (aged 21–77 years) and further showed that age was associated with reduced WM precision. Conclusions: Together, these findings demonstrate dissociable effects of three health-related factors (sleep, mood, and age) on WM representations and highlighte the importance of assessing different aspects of WM representations (e.g., capacity and precision) in future neuropsychological research.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to the present study.

References

REFERENCES

Adams, R.A., Stanczak, D.E., Leutzinger, M.R., Waters, M.D., & Brown, T. (2001). The impact of psychological disturbances on immediate memory. Archives of Clinical Neuropsychology, 16(6), 605618. doi: 10.1016/S0887-6177(00)00072-X CrossRefGoogle ScholarPubMed
Alvaro, P.K., Roberts, R.M., & Harris, J.K. (2014). The independent relationships between insomnia, depression, subtypes of anxiety, and chronotype during adolescence. Sleep Medicine, 15(8), 934941. doi: 10.1016/j.sleep.2014.03.019 CrossRefGoogle ScholarPubMed
Arnett, P.A., Higginson, C.I., Voss, W.D., Bender, W.I., Wurst, J.M., & Tippin, J.M. (1999a). Depression in multiple sclerosis: Relationship to working memory capacity. Neuropsychology, 13(4), 546556.CrossRefGoogle ScholarPubMed
Arnett, P.A., Higginson, C.I., Voss, W.D., Wright, B., Bender, W.I., Wurst, J.M., & Tippin, J.P. (1999b). Depressed mood in multiple sclerosis: Relationship to capacity-demanding memory and attentional functioning. Neuropsychology, 13(3), 434446. doi: 10.1037/0894-4105.13.3.434 CrossRefGoogle ScholarPubMed
Banthia, R., Malcarne, V.L., Ko, C.M., Varni, J.W., & Sadler, G.R. (2009). Fatigued breast cancer survivors: The role of sleep quality, depressed mood, stage and age. Psychology & Health, 24(8), 965980. doi: 10.1080/08870440802110831 CrossRefGoogle Scholar
Bays, P.M. & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851854. doi: 10.1126/science.1158023 CrossRefGoogle ScholarPubMed
Bermudez, T. & Souza, A.S. (2017). Can emotional content reduce the age gap in visual working memory? Evidence from two tasks. Cognition and Emotion, 31(8), 16761683. doi: 10.1080/02699931.2016.1240066 CrossRefGoogle ScholarPubMed
Berry, A.S., Demeter, E., Sabhapathy, S., English, B.A., Blakely, R.D., Sarter, M., & Lustig, C. (2014). Disposed to distraction: Genetic variation in the cholinergic system influences distractibility but not time-on-task effects. Journal of Cognitive Neuroscience, 26(9), 19811991. doi: 10.1162/jocn_a_00607 CrossRefGoogle Scholar
Blackwell, T., Yaffe, K., Laffan, A., Ancoli-Israel, S., Redline, S., Ensrud, K.E., Song, Y., Stone, K.L., & Osteoporotic Fractures in Men (MrOS) Study Group. (2014). Associations of objectively and subjectively measured sleep quality with subsequent cognitive decline in older community-dwelling men: The MrOS sleep study. Sleep, 37(4), 655663. doi: 10.5665/sleep.3562 Google ScholarPubMed
Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., & Kupfer, D.J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193213. doi: 10.1016/0165-1781(89)90047-4 CrossRefGoogle ScholarPubMed
Chee, M.W.L. & Choo, W.C. (2004). Functional imaging of working memory after 24 hr of total sleep deprivation. Journal of Neuroscience, 24(19), 45604567. doi: 10.1523/JNEUROSCI.0007-04.2004 CrossRefGoogle ScholarPubMed
Chee, M.W.L. & Chuah, Y.M.L. (2007). Functional neuroimaging and behavioral correlates of capacity decline in visual short-term memory after sleep deprivation. Proceedings of the National Academy of Sciences of the United States of American, 104(22), 94879492. doi: 10.1073/pnas.0610712104 CrossRefGoogle ScholarPubMed
Chee, M.W.L., Goh, C.S.F., Namburi, P., Parimal, S., Seidl, K.N., & Kastner, S. (2011). Effects of sleep deprivation on cortical activation during directed attention in the absence and presence of visual stimuli. NeuroImage, 58(2), 595604. doi: 10.1016/j.neuroimage.2011.06.058 CrossRefGoogle ScholarPubMed
Conway, A.R., Cowan, N., Bunting, M.F., Therriault, D.J., & Minkoff, S.R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2), 163183.CrossRefGoogle Scholar
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87185. doi: 10.1177/0963721409359277 CrossRefGoogle ScholarPubMed
Craik, F.I.M. & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In Craik, F.I.M., &Trehub, S. (Eds.), Aging and Cognitive Processes (pp. 191211). New York, NY: Springer Science & Business Media. doi: 10.1007/978-1-4684-4178-9 CrossRefGoogle Scholar
Cuijpers, P., Koole, S.L., van Dijke, A., Roca, M., Li, J., & Reynolds, C.F. (2014). Psychotherapy for subclinical depression: Meta-analysis. The British Journal of Psychiatry, 205(4), 268274. doi: 10.1192/bjp.bp.113.138784 CrossRefGoogle ScholarPubMed
Engle, R.W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 1923. doi: 10.1111/1467-8721.00160 CrossRefGoogle Scholar
Fabiani, M., Zimmerman, B., & Gratton, G. (2015). Working memory and aging: A review. In Jolicoeur, P., Lefebvre, C., &Martinez-Trujillo, J. (Eds.), Mechanisms of sensory working memory attention and performance XXV (pp. 131148). Amsterdam, Netherlands: Elsevier. doi: 10.1016/b978-0-12-801371-7.00011-9 CrossRefGoogle Scholar
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 11491160. doi: 10.3758/BRM.41.4.1149 CrossRefGoogle ScholarPubMed
Gold, J.M., Hahn, B., Zhang, W., Robinson, B.M., Kappenman, E.S., Beck, V.M., & Luck, S.J. (2010). Reduced capacity but spared precision and maintenance of working memory representations in schizophrenia. Archives of General Psychiatry, 67(6), 570577. doi: 10.1001/archgenpsychiatry.2010.65 CrossRefGoogle Scholar
Hasher, L. & Zacks, R.T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology of Learning and Motivation, 22, 193225.CrossRefGoogle Scholar
Hertel, P.T. & Hardin, T.S. (1990). Remembering with and without awareness in a depressed mood: Evidence of deficits in initiative. Journal of Experimental Psychology: General, 119(1), 4559.CrossRefGoogle Scholar
Hertel, P.T. & Rude, S.S. (1991). Depressive deficits in memory: Focusing attention improves subsequent recall. Journal of Experimental Psychology: General, 120(3), 301309. doi: 10.1037//0096-3445.120.3.301 CrossRefGoogle ScholarPubMed
Hubbard, N.A., Hutchison, J.L., Turner, M., Montroy, J., Bowles, R.P., & Rypma, B. (2015). Depressive thoughts limit working memory capacity in dysphoria. Cognition and Emotion, 30(2), 193209. doi: 10.1080/02699931.2014.991694 CrossRefGoogle ScholarPubMed
Hultsch, D.F. & MacDonald, S.W.S. (2004). Intraindividual variability in performance as a theoretical window onto cognitive aging. In Dixon, R.A., Bäckman, L., & Nilsson, L.G. (Eds.), New frontiers in cognitive aging (pp. 6588). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Jagust, W. (2013). Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron, 77(2), 219234. doi: 10.1016/j.neuron.2013.01.002 CrossRefGoogle ScholarPubMed
Kane, M.J., Poole, B.J., Tuholski, S.W., & Engle, R.W. (2006). Working memory capacity and the top-down control of visual search: Exploring the boundaries of “executive attention”. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 749777. doi: 10.1037/0278-7393.32.4.749 Google ScholarPubMed
Klein, K. & Boals, A. (2001). The relationship of life event stress and working memory capacity. Applied Cognitive Psychology, 15(5), 565579. doi: 10.1002/acp.727 CrossRefGoogle Scholar
Korten, N.C.M., Sliwinski, M.J., Comijs, H.C., & Smyth, J.M. (2014). Mediators of the relationship between life events and memory functioning in a community sample of adults. Applied Cognitive Psychology, 28(5), 626633. doi: 10.1002/acp.3043 CrossRefGoogle Scholar
Kroenke, K. & Spitzer, R.L. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613. doi: 10.1046/j.1525-1497.2001.016009606.x CrossRefGoogle ScholarPubMed
Leal, S.L. & Yassa, M.A. (2015). Neurocognitive aging and the hippocampus across species. Trends in Neurosciences, 38(12), 800812. doi: 10.1016/j.tins.2015.10.003 CrossRefGoogle ScholarPubMed
Luck, S.J. & Vogel, E.K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279281. doi: 10.1038/36846 CrossRefGoogle ScholarPubMed
Luck, S.J. & Vogel, E.K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391400. doi: 10.1016/j.tics.2013.06.006 CrossRefGoogle ScholarPubMed
Lustig, C. & Jantz, T. (2015). Questions of age differences in interference control: When and how, not if? Brain Research, 1612, 5969. doi: 10.1016/j.brainres.2014.10.024 CrossRefGoogle ScholarPubMed
Lustig, C., Hasher, L., & Zacks, R.T. (2007). Inhibitory deficit theory: Recent developments in a “new view.” In Gorfein, D.S. &MacLeod, C.M. (Eds.), Inhibition in cognition Vol. 17, (pp. 145162). Washington, DC: Inhibition in cognition. doi: 10.1037/11587-008 CrossRefGoogle Scholar
Lynn, S.K., Ibagon, C., Bui, E., Palitz, S.A., Simon, N.M., & Barrett, L.F. (2016). Working memory capacity is associated with optimal adaptation of response bias to perceptual sensitivity in emotion perception. Emotion, 16(2), 155163. doi: 10.1037/emo0000111 CrossRefGoogle ScholarPubMed
Maglione, J.E., Ancoli-Israel, S., Peters, K.W., Paudel, M.L., Yaffe, K., Ensrud, K.E., & Stone, K.L. (2014). Subjective and objective sleep disturbance and longitudinal risk of depression in a cohort of older women. Sleep, 37(7), 11791187. doi: 10.5665/sleep.3834 CrossRefGoogle Scholar
Mathews, A. & MacLeod, C. (1994). Cognitive approaches to emotion and emotional disorders. Annual Review of Psychology, 45(1), 2550. doi: 10.1146/annurev.ps.45.020194.000325 CrossRefGoogle ScholarPubMed
Mellor, A., Waters, F., Olaithe, M., McGowan, H., & Bucks, R.S. (2014). Sleep and aging: Examining the effect of psychological symptoms and risk of sleep-disordered breathing. Behavioral Sleep Medicine, 12(3), 222234. doi: 10.1080/15402002.2013.801343 CrossRefGoogle ScholarPubMed
Meng, X.L., Rosenthal, R., & Rubin, D.B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111(1), 172175. doi: 10.1037/0033-2909.111.1.172 CrossRefGoogle Scholar
Nebes, R.D., Buysse, D.J., Halligan, E.M., Houck, P.R., & Monk, T.H. (2009). Self-reported sleep quality predicts poor cognitive performance in healthy older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64(2), 180187. doi: 10.1093/geronb/gbn037 CrossRefGoogle ScholarPubMed
Noack, H., Lövdén, M., & Lindenberger, U. (2012). Normal aging increases discriminal dispersion in visuospatial short-term memory. Psychology and Aging, 27(3), 627637. doi: 10.1037/a0027251 CrossRefGoogle ScholarPubMed
Ohayon, M.M., Carskadon, M.A., Guilleminault, C., & Vitiello, M.V. (2004). Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep, 27(7), 12551273.CrossRefGoogle ScholarPubMed
Ohayon, M.M., Zulley, J., Guilleminault, C., Smirne, S., & Priest, R.G. (2001). How age and daytime activities are related to insomnia in the general population: Consequences for older people. Journal of the American Geriatrics Society, 49(4), 360366.CrossRefGoogle ScholarPubMed
Park, D.C., Lautenschlager, G., Hedden, T., Davidson, N.S., Smith, A.D., & Smith, P.K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299320. doi: 10.1037/0882-7974.17.2.299 CrossRefGoogle ScholarPubMed
Peich, M.-C., Husain, M., & Bays, P.M. (2013). Age-related decline of precision and binding in visual working memory. Psychology and Aging, 28(3), 729743. doi: 10.1037/a0033236 CrossRefGoogle ScholarPubMed
Pertzov, Y., Heider, M., Liang, Y., & Husain, M. (2015). Effects of healthy ageing on precision and binding of object location in visual short term memory. Psychology and Aging, 30(1), 2635. doi: 10.1037/a0038396 CrossRefGoogle ScholarPubMed
R Core Team. (2014). R: A language and environment for statistical computing. Retrieved August 15, 2014, from http://www.R-project.org/ Google Scholar
Rana, B.K., Panizzon, M.S., Franz, C.E., Spoon, K.M., Jacobson, K.C., Xian, H., Ancoli-Israel, S., Lyons, M., & Kremen, W.S. (2018). Association of sleep quality on memory-related executive functions in middle age. Journal of the International Neuropsychological Society, 24(1), 6776.CrossRefGoogle ScholarPubMed
Schmeichel, B.J., Volokhov, R.N., & Demaree, H.A. (2008). Working memory capacity and the self-regulation of emotional expression and experience. Journal of Personality and Social Psychology, 95(6), 15261540. doi: 10.1037/a0013345 CrossRefGoogle ScholarPubMed
Smith, M.E., McEvoy, L.K., & Gevins, A. (2002). The impact of moderate sleep loss on neurophysiologic signals during working-memory task performance. Sleep, 25(7), 784794.CrossRefGoogle ScholarPubMed
Souza, A.S. (2016). No age deficits in the ability to use attention to improve visual working memory. Psychology and Aging, 31(5), 456470. doi: 10.1037/pag0000107 CrossRefGoogle ScholarPubMed
Sözeri-Varma, G. (2012). Depression in the elderly: clinical features and risk factors. Aging and Disease, 3(6), 465471.Google ScholarPubMed
Unruh, M.L., Redline, S., An, M.-W., Buysse, D.J., Nieto, F.J., Yeh, J.-L., & Newman, A.B. (2008). Subjective and objective sleep quality and aging in the sleep heart health study. Journal of the American Geriatrics Society, 56(7), 12181227. doi: 10.1111/j.1532-5415.2008.01755.x CrossRefGoogle ScholarPubMed
Verstraeten, E., Cluydts, R., Pevernagie, D., & Hoffmann, G. (2004). Executive function in sleep apnea: controlling for attentional capacity in assessing executive attention. Sleep, 27(4), 685693.Google ScholarPubMed
Waters, F. & Bucks, R.S. (2011). Neuropsychological effects of sleep loss: Implication for neuropsychologists. Journal of the International Neuropsychological Society, 17(4), 571586. doi: 10.1017/S1355617711000610 CrossRefGoogle ScholarPubMed
Wee, N., Asplund, C.L., & Chee, M.W.L. (2013). Sleep deprivation accelerates delay-related loss of visual short-term memories without affecting precision. Sleep, 36(6), 849856. doi: 10.5665/sleep.2710 CrossRefGoogle ScholarPubMed
Xie, W. & Zhang, W. (2016). Negative emotion boosts quality of visual working memory representation. Emotion, 16(5), 760774. doi: 10.1037/emo0000159 CrossRefGoogle ScholarPubMed
Xie, W. & Zhang, W. (2017a). Dissociations of the number and precision of visual short-term memory representations in change detection. Memory & Cognition, 45(8), 14231437. doi: 10.3758/s13421-017-0739-7 CrossRefGoogle ScholarPubMed
Xie, W. & Zhang, W. (2017b). Familiarity increases the number of remembered Pokémon in visual short-term memory. Memory & Cognition, 45(4), 677689. doi: 10.3758/s13421-016-0679-7 CrossRefGoogle ScholarPubMed
Xie, W., Li, H., Ying, X., Zhu, S., Fu, R., Zou, Y., & Cui, Y. (2017). Affective bias in visual working memory is associated with capacity. Cognition and Emotion, 31(7), 13451360. doi: 10.1080/02699931.2016.1223020 Google ScholarPubMed
Xie, W., Cappiello, M., Park, H.-B., Deldin, P., Chan, R.C.K., & Zhang, W. (2018a). Schizotypy is associated with reduced mnemonic precision in visual working memory. Schizophrenia Research, 193, 9197. doi: 10.1016/j.schres.2017.07.046 CrossRefGoogle ScholarPubMed
Xie, W., Li, H., Zou, Y., Sun, X., & Shi, C. (2018b). A suicidal mind tends to maintain less negative information in visual working memory. Psychiatry Research, 262, 549557. doi: 10.1016/j.psychres.2017.09.043 CrossRefGoogle ScholarPubMed
Zawadzki, M.J., Graham, J.E., & Gerin, W. (2013). Rumination and anxiety mediate the effect of loneliness on depressed mood and sleep quality in college students. Health Psychology, 32(2), 212222. doi: 10.1037/a0029007 CrossRefGoogle ScholarPubMed
Zhang, W. & Luck, S.J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233235. doi: 10.1038/nature06860 CrossRefGoogle ScholarPubMed
Zhang, W. & Luck, S.J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20(4), 423428. doi: 10.1111/j.1467-9280.2009.02322.x CrossRefGoogle ScholarPubMed
Zhang, W. & Luck, S.J. (2011). The number and quality of representations in working memory. Psychological Science, 22(11), 14341441. doi: 10.1177/0956797611417006 CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Xie et al. supplementary material

Xie et al. supplementary material 1

Download Xie et al. supplementary material(PDF)
PDF 115.8 KB