Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T15:27:39.678Z Has data issue: false hasContentIssue false

Neuropsychological Practice Effects in the Context of Cognitive Decline: Contributions from Learning and Task Novelty

Published online by Cambridge University Press:  21 January 2016

Sommer R. Thorgusen*
Affiliation:
University of Utah, Department of Psychology, Salt Lake City, Utah
Yana Suchy
Affiliation:
University of Utah, Department of Psychology, Salt Lake City, Utah
Gordon J. Chelune
Affiliation:
University of Utah, Department of Neurology, Salt Lake City, Utah
Brian R. Baucom
Affiliation:
University of Utah, Department of Psychology, Salt Lake City, Utah
*
Correspondence and reprint requests to: Sommer R. Thorgusen, Department of Psychology, University of Utah, 380 South 1530 East, BEH S Room 502, Salt Lake City, UT 84112. E-mail: [email protected]

Abstract

Although cognitive decline is typically associated with decreasing practice effects (PEs) (presumably due to declining memory), some studies show increased PEs with declines in cognition. One explanation for these inconsistencies is that PEs reflect not only memory, but also rebounds from adapting to task novelty (i.e., novelty effect), leading to increased PEs. We examined a theoretical model of relationships among novelty effects, memory, cognitive decline, and within-session PEs. Sixty-six older adults ranging from normal to severely impaired completed measures of memory, novelty effects, and two trials each of Wechsler Adult Intelligence Scale, 4thEdition Symbol Search and Coding. Interrelationships among variables were examined using regression analyses. PEs for Symbol Search and Coding (a) were related to different proposed PE components (i.e., memory and novelty effects), such that novelty effect predicted Symbol Search PE (R2=.239, p<.001) and memory predicted Coding PE (R2=.089, p=.015), and (b) showed different patterns across stages of cognitive decline, such that the greatest cognitive decline was associated with smallest Coding PE (R2=.125, p=.004), whereas intermediate cognitive decline was associated with the greatest Symbol Search PE (R2=.097, p=.040). The relationship between cognitive decline and PE for Symbol Search was partially mediated by novelty effect among older adults with abnormal cognitive decline (model R2=.286, p<.001). These findings (a) suggest that PE is not a unitary construct, (b) offer an explanation for contradictory findings in the literature, and (c) highlight the need for a better understanding of component processes of PE across different neuropsychological measures. (JINS, 2016, 22, 453–466)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akdemir, A., Cangöz, B.T., Örsel, S., & Selekler, K. (2007). A comparison of implicit memory performance in mild cognitive impairment and Alzheimer type dementia patients. Türk Psikiyatri Dergisi, 18(2), 110.Google Scholar
Basso, M.R., Bornstein, R.A., & Lang, J.M. (1999). Practice effects on commonly used measures of executive function across twelve months. The Clinical Neuropsychologist, 13(3), 283292. doi:10.1076/clin.13.3.283.1743 Google Scholar
Basso, M.R., Carona, F.D., Lowery, N., & Axelrod, B.N. (2002). Practice effects on the WAIS-III across 3-and 6-month intervals. The Clinical Neuropsychologist, 16(1), 5763. doi:10.1076/clin.16.1.57.8329 Google Scholar
Beglinger, L.J., Gaydos, B., Tangphao-Daniels, O., Duff, K., Kareken, D.A., Crawford, J., & Siemers, E.R. (2005). Practice effects and the use of alternate forms in serial neuropsychological testing. Archives of Clinical Neuropsychology, 20(4), 517529. doi:10.1016/j.acn.2004.12.003 Google Scholar
Beglinger, L.J., Tangphao-Daniels, O., Kareken, D.A., Zhang, L., Mohs, R., & Siemers, E.R. (2005). Neuropsychological test performance in healthy elderly volunteers before and after donepezil administration: A randomized, controlled study. Journal of Clinical Psychopharmacology, 25(2), 159. doi:10.1097/01.jcp.0000155822.51962.b4 Google Scholar
Benedict, R.H.B. (2005). Effects of using same- versus alternate-form memory tests during short-interval repeated assessments in multiple sclerosis. Journal of the International Neuropsychological Society, 11(6), 727736. doi:10.1017/S1355617705050782 Google Scholar
Benedict, R.H.B., & Zgaljardic, D.J. (1998). Practice effects during repeated administrations of memory tests with and without alternate forms. Journal of Clinical and Experimental Neuropsychology, 20(3), 339352. doi:10.1076/jcen.20.3.339.822 Google Scholar
Biederman, I. (1972). Human performance in contingent information-processing tasks. Journal of Experimental Psychology, 93(2), 219238.Google Scholar
Blalock, L.D., & McCabe, D.P. (2011). Proactive interference and practice effects in visuospatial working memory span task performance. Memory, 19(1), 8391. doi:10.1080/09658211.2010.537035 Google Scholar
Brandt, J., & Folstein, M.F. (2003). TICS, telephone interview for cognitive status: Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Brandt, J., Spencer, M., & Folstein, M. (1988). The telephone interview for cognitive status. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 1(2), 111117.Google Scholar
Busch, R.M., Chelune, G.J., & Suchy, Y. (2006). Using norms in neuropsychological assessment of the elderly. In D.K. Attix & K.A. Welsh-Bohmer (Eds.), Geriatric neuropsychology: Assessment and Intervention (pp. 133157). New York: Guilford Publications.Google Scholar
Calamia, M., Markon, K., & Tranel, D. (2012). Scoring higher the second time around: Meta-analyses of practice effects in neuropsychological assessment. The Clinical Neuropsychologist, 26(4), 543570. doi:10.1080/13854046.2012.680913 Google Scholar
Camozzato, A., de Almeida Fleck, M.P., Delgado, V., & Fagundes Chaves, M.L. (2007). Education did not interact with major depression on performance of memory tests in acute Southern Brazilian in patients. Dementia & Neuropsychologia, 1(1), 2431.Google Scholar
Chelune, G.J., & Franklin, R.D. (2003). Assessing reliable neuropsychological change. In R.D. Franklin (Ed.), Prediction in forensic and neuropsychology: Sound statistical practices (pp. 115138). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Cooper, D.B., Epker, M., Lacritz, L., Weiner, M., Rosenberg, R.N., Honig, L., & Cullum, C.M. (2001). Effects of practice on category fluency in Alzheimer’s disease. The Clinical Neuropsychologist, 15(1), 125128. doi:10.1076/clin.15.1.125.1914 Google ScholarPubMed
Cooper, D.B., Lacritz, L.H., Weiner, M.F., Rosenberg, R.N., & Cullum, C.M. (2004). Category fluency in mild cognitive impairment: Reduced effect of practice in test-retest conditions. Alzheimer Disease and Associated Disorders, 18, 120122. doi:10.1097/01.wad.0000127442.15689.92 Google Scholar
Darby, D., Maruff, P., Collie, A., & McStephen, M. (2002). Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology, 59(7), 10421046. doi:10.1001/archneur.59.6.1042 Google Scholar
Dikmen, S.S., Heaton, R.K., Grant, I., & Temkin, N.R. (1999). Test-retest reliability and practice effects of Expanded Halstead–Reitan Neuropsychological Test Battery. Journal of the International Neuropsychological Society, 5(4), 346356. doi:10.1017/S1355617799544056 Google Scholar
Duff, K. (2012). Evidence-based indicators of neuropsychological change in the individual patient: Relevant concepts and methods. Archives of Clinical Neuropsychology, 27(3), 248261. doi:10.1093/arclin/acr120 Google Scholar
Duff, K., Beglinger, L.J., Moser, D.J., Paulsen, J.S., Schultz, S.K., & Arndt, S. (2010). Predicting cognitive change in older adults: The relative contribution of practice effects. Archives of Clinical Neuropsychology, 25(2), 8188. doi:10.1093/arclin/acp105 Google Scholar
Duff, K., Beglinger, L.J., Schultz, S.K., Moser, D.J., McCaffrey, R.J., Haase, R.F., & Paulsen, J.S. (2007). Practice effects in the prediction of long-term cognitive outcome in three patient samples: A novel prognostic index. Archives of Clinical Neuropsychology, 22(1), 1524. doi:10.1016/j.acn.2006.08.013 Google Scholar
Duff, K., Beglinger, L.J., Van Der Heiden, S., Moser, D.J., Arndt, S., Schultz, S.K., & Paulsen, J.S. (2008). Short-term practice effects in amnestic mild cognitive impairment: Implications for diagnosis and treatment. International Psychogeriatrics, 20(5), 986999. doi:10.1017/S1041610208007254 Google Scholar
Duff, K., Callister, C., Dennett, K., & Tometich, D. (2012). Practice effects: A unique cognitive variable. The Clinical Neuropsychologist, 26(7), 11171127. doi:10.1080/13854046.2012.722685 Google Scholar
Duff, K., Chelune, G., & Dennett, K. (2012). Within-session practice effects in patients referred for suspected dementia. Dementia and Geriatric Cognitive Disorders, 33(4), 245249. doi:10.1159/000339268 Google Scholar
Dunn, V.K., & Sacco, W.P. (1989). Psychometric evaluation of the Geriatric Depression Scale and the Zung Self-Rating Depression Scale using an elderly community sample. Psychology and Aging, 4(1), 125126.Google Scholar
Estevis, E., Basso, M.R., & Combs, D. (2012). Effects of practice on the Wechsler Adult Intelligence Scale-IV across 3- and 6-month intervals. The Clinical Neuropsychologist, 26(2), 239254. doi:10.1080/13854046.2012.659219 Google Scholar
Euler, M., Niermeyer, M., & Suchy, Y. (2015). Neurocognitive and neurophysiological correlates of motor planning during familiar and novel contexts. Neuropsychology [Epub ahead of print] doi:10.1037/neu0000219 Google Scholar
Eyler, L.T., Sherzai, A., Kaup, A.R., & Jeste, D.V. (2011). A review of functional brain imaging correlates of successful cognitive aging. Biological Psychiatry, 70(2), 115122. doi:10.1016/j.biopsych.2010.12.032 Google Scholar
Feher, E.P., Larrabee, G.J., & Crook, T.H. (1992). Factors attenuating the validity of the Geriatric Depression Scale in a dementia population. Journal of the American Geriatrics Society, 40(9), 906909.Google Scholar
Gobel, E.W., Blomeke, K., Zadikoff, C., Simuni, T., Weintraub, S., & Reber, P.J. (2013). Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson’s disease. Neuropsychology, 27(3), 314321. doi:10.1037/a0032305 Google Scholar
Halsband, U., & Lange, R.K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology, Paris, 99(4--6), 414424. doi:10.1016/j.jphysparis.2006.03.007 Google Scholar
Hayes, A.F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408420. doi:10.1080/03637750903310360 Google Scholar
Hayes, A.F., & Preacher, K.J. (2010). Quantifying and testing indirect effects in simple mediation models when the constituent paths are nonlinear. Multivariate Behavioral Research, 45(4), 627660. doi:10.1080/00273171.2010.498290 Google Scholar
Heathcote, A., Brown, S., & Mewhort, D.J.K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7(2), 185207.Google Scholar
Helkala, E.L., Kivipelto, M., Hallikainen, M., Alhainen, K., Heinonen, H., Tuomilehto, J., & Nissinen, A. (2002). Usefulness of repeated presentation of Mini-Mental State Examination as a diagnostic procedure--A population-based study. Acta Neurologica Scandinavica, 106(6), 341346. doi:10.1034/j.1600-0404.2002.01315.x Google Scholar
Jonker, C., Geerlings, M.I., & Schmand, B. (2000). Are memory complaints predictive for dementia? A review of clinical and population-based studies. International Journal of Geriatric Psychiatry, 15(11), 983991. doi:10.1002/1099-1166(200011)15:11<983::AID-GPS238>3.0.CO;2-5 Google Scholar
Joy, S., Fein, D., & Kaplan, E. (2003). Decoding digit symbol: Speed, memory, and visual scanning. Assessment, 10(1), 5665. doi:10.1177/0095399702250335 Google Scholar
Joy, S., Fein, D., Kaplan, E., & Freedman, M. (2000). Speed and memory in WAIS-R-NI Digit Symbol performance among healthy older adults. Journal of the International Neuropsychological Society, 6(7), 770780. doi:10.1017/S1355617700677044 Google Scholar
Joy, S., Kaplan, E., & Fein, D. (2004). Speed and memory in the WAIS-III Digit Symbol--Coding subtest across the adult lifespan. Archives of Clinical Neuropsychology, 19(6), 759767. doi:10.1016/j.acn.2003.09.009 Google Scholar
Köhler, S., van Boxtel, M.P., van Os, J., Thomas, A.J., ’O’Brien, J.T., Jolles, J., & Allardyce, J. (2010). Depressive symptoms and cognitive decline in community‐dwelling older adults. Journal of the American Geriatrics Society, 58(5), 873879. doi:10.1111/j.1532-5415.2010.02807.x Google Scholar
Larson, J.C.G., & Suchy, Y. (2014). The contribution of verbalization to action. Psychological Research, 119. doi:10.1007/s00426-014-0586-0 Google Scholar
Lenzi, D., Serra, L., Perri, R., Pantano, P., Lenzi, G.L., Paulesu, E., & Macaluso, E. (2011). Single domain amnestic MCI: A multiple cognitive domains fMRI investigation. Neurobiology of Aging, 32, 15421557. doi:10.1016/j.neurobiolaging.2009.09.006 Google Scholar
Machulda, M.M., Pankratz, V.S., Christianson, T.J., Ivnik, R.J., Mielke, M.M., Roberts, R.O., & Petersen, R.C. (2013). Practice effects and longitudinal cognitive change in normal aging vs. incident mild cognitive impairment and dementia in The Mayo Clinic Study of Aging. The Clinical Neuropsychologist, 27(8), 12471264. doi:10.1080/13854046.2013.836567 Google Scholar
Mattis, S. (1988). Dementia rating scale: Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
McCaffrey, R.J., Duff, K., & Westervelt, H.J. (2000). ’Practitioner’s guide to evaluating change with neuropsychological assessment instruments. Dordrecht Netherlands: Kluwer Academic Publishers.Google Scholar
Mitchell, A.J. (2008). The clinical significance of subjective memory complaints in the diagnosis of mild cognitive impairment and dementia: A meta-analysis. International Journal of Geriatric Psychiatry, 23(11), 11911202. doi:10.1002/gps.2053 Google Scholar
Newell, A., & Rosenbloom, P.S. (1981). Mechanisms of skill acquisition and the law of practice. Cognitive Skills and Their Acquisition, 155.Google Scholar
Ouellet, M.-C., Beauchamp, M.H., Owen, A.M., & Doyon, J. (2004). Acquiring a cognitive skill with a new repeating version of the Tower of London Task. Canadian Journal of Experimental Psychology, 58(4), 272288. doi:10.1037/h0087450 Google Scholar
Preacher, K.J., & Hayes, A.F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments & Computers, 36(4), 717731. doi:10.3758/BF03206553 Google Scholar
Rogers, R.D., & Monsell, S.D. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology. General, 124(2), 207. doi:10.1037/0894-4105.20.6.675 Google Scholar
Rousson, V., Gasser, T., Caflisch, J., & Jenni, O.G. (2009). Neuromotor performance of normally developing left-handed children and adolescents. Human Movement Science, 28(6), 809817. doi:10.1016/j.humov.2009.06.001 Google Scholar
Schmidt, M. (1996). Rey auditory verbal learning test: A handbook. Los Angeles, CA: Western Psychological Services.Google Scholar
Schrijnemaekers, A.M.C., de Jager, C.A., Hogervorst, E., & Budge, M.M. (Writers) (2006). Cases with mild cognitive impairment and Alzheimer’s disease fail to benefit from repeated exposure to episodic memory tests as compared with controls. Journal of Clinical and Experimental Neuropsychology, 28, 438455. doi:10.1080/13803390590935462 Google Scholar
Smith, G.E., Ivnik, R.J., Malec, J.F., & Kokmen, E. (1994). Psychometric properties of the Mattis Dementia Rating Scale. Assessment, 1(2), 123131.Google Scholar
Squire, L.R. (1994). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. In D.L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 203231). Cambridge, MA: The MIT Press.Google Scholar
Suchy, Y., Derbidge, C., & Cope, C. (2005). Behavioral dyscontrol scale-electronic version: First examination of reliability, validity, and incremental utility. The Clinical Neuropsychologist, 19, 426. doi:10.1080/13854040490888585 Google Scholar
Suchy, Y., Euler, M., & Eastvold, A. (2014). Exaggerated reaction to novelty as a subclinical consequent of mild traumatic brain injury. Brain Injury [Epub ahead of print] doi:10.3109/02699052.2014.888766 Google Scholar
Suchy, Y., & Kraybill, M. (2007). The relationship between motor programming and executive abilities: Constructs measured by the Push-Turn-Taptap task from the behavioral dyscontrol scale-electronic version. Journal of Clinical and Experimental Neuropsychology, 29, 648659. doi:10.1080/13803390600910506 Google Scholar
Suchy, Y., Kraybill, M.L., & Franchow, E. (2011). Practice effect and beyond: Reaction to novelty as an independent predictor of cognitive decline among older adults. Journal of the International Neuropsychological Society, 17(1), 101111. doi:10.1017/S135561771000130X Google Scholar
Sweet, L.H., Paskavitz, J.F., O’Connor, M.J., Browndyke, J.N., Wellen, J.W., & Cohen, R.A. (2005). FMRI correlates of the WAIS-III Symbol Search subtest. Journal of the International Neuropsychological Society, 11(4), 471476. doi:10.1017/S1355617705050575 Google Scholar
Wechsler, D. (2008). Wechsler Adult Intelligence Scale-Fourth Edition. San Antonio, TX: Pearson.Google Scholar
Wilson, B.A., Watson, P.C., Baddeley, A.D., Emslie, H., & Evans, J.J. (2000). Improvement or simply practice? The effects of twenty repeated assessments on people with and without brain injury. Journal of the International Neuropsychological Society, 6(04), 469479. doi:10.1017/S1355617700644053 Google Scholar
Yan, J.H., & Dick, M.B. (2006). Practice effects on motor control in healthy seniors and patients with mild cognitive impairment and Alzheimer’s disease. Aging, Neuropsychology, and Cognition, 13(3--4), 385410. doi:10.1080/138255890969609 Google Scholar
Yesavage, J.A. (1982). Development and validation of a Geriatric Depression Screening Scale: A preliminary report. Journal of Psychiatric Research, 17(1), 3749.Google Scholar
Supplementary material: File

Thorgusen supplementary material S1

Supplementary Figure

Download Thorgusen supplementary material S1(File)
File 44.4 KB