Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T20:56:18.323Z Has data issue: false hasContentIssue false

Mild Cognitive Impairments Moderate the Effect of Time on Verbal Fluency Performance

Published online by Cambridge University Press:  17 October 2016

Eleni Demetriou
Affiliation:
Ferkauf Graduate School of Psychology, Yeshiva University, New York, New York
Roee Holtzer*
Affiliation:
Ferkauf Graduate School of Psychology, Yeshiva University, New York, New York Department of Neurology, Albert Einstein College of Medicine, NewYork, New York
*
Correspondence and reprint requests to: Roee Holtzer, Ferkauf Graduate School of Psychology and Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, New York, New York 10461. E-mail: [email protected]

Abstract

Objectives: Mild cognitive impairments (MCI) is a transitional state in aging associated with increased risk of incident dementia. The current study investigated whether MCI status moderated the effect of time on word generation during verbal fluency tasks. Specifically, the objective was to determine whether MCI status had differential effects on initial automatic or latter more effortful retrieval processes of fluency tasks. Methods: Participants were community residing older adults enrolled in a longitudinal cohort study. Of the 408 participants, 353 were normal (age=76.06±6.61; %female=57.8) and 55 were diagnosed with MCI (age=78.62±7.00; %female=52.7). Phonemic and category fluency were each administered for 60 s, but performance was recorded at three consecutive 20-s intervals (0–20 s [T1], 21–40 s [T2], 41–60 s [T3]. Separate linear mixed effects models for each fluency task were used to determine the effects of group, time, and their interaction on word generation. Results: In both fluency tasks, word generation declined as a function of time. Individuals with MCI generated fewer words compared to controls during the first 20 s of phonemic (beta=−1.56; p<.001; d=0.28) and category fluency (beta=−1.85; p<.001; d=0.37). Group by time interactions revealed that individuals with MCI demonstrated attenuated declines in word generation from the first to the second and third time intervals of both phonemic ([T1 vs. T2] beta=2.17, p=.001; d=0.41; [T1 vs. T3]beta=2.28, p=.001; d=0.45) and category ([T1 vs. T2] beta= 2.22, p=.002; d=0.50; [T1 vs. T3]beta=3.16, p<.001; d=0.71) fluency. Conclusions: Early automatic retrieval processes in verbal fluency tasks are compromised in MCI. (JINS, 2017, 23, 44–55)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., & Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270279. doi:10.1016/j.jalz.2011.03.008 Google Scholar
Alexopoulos, P., Grimmer, T., Perneczky, R., Domes, G., & Kurz, A. (2006). Progression to dementia in clinical subtypes of mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22(1), 2734. doi:10.1159/000093101 CrossRefGoogle ScholarPubMed
Baker, P.S., Bodner, E.V., & Allman, R.M. (2003). Measuring life-space mobility in community-dwelling older adults. Journal of the American Geriatrics Society, 51(11), 16101614.Google Scholar
Beck, A.T., & Steer, R.A. (1990). Manual for the Beck Anxiety Inventory. San Antonio, TX: The Psychological Corporation.Google Scholar
Brandt, J., Aretouli, E., Neijstrom, E., Samek, J., Manning, K., Albert, S.M., & Roche Bandeen, K. (2009). Selectivity of executive function deficits in Mild cognitive impairment. Neuropsychology, 23(5). doi:10.1037/a0015851 Google Scholar
Brandt, J., & Manning, K.J. (2009). Patterns of word-list generation in mild cognitive impairment and Alzheimer’s disease. Clinical Neuropsychologist, 23(5), 870879. doi:10.1080/13854040802585063 Google Scholar
Bryan, J., Luszcz, M.A., & Crawford, J.R. (1997). Verbal knowledge and speed of information processing as mediators of age differences in verbal fluency performance among older adults. Psychology and Aging, 12(3), 473478.Google Scholar
Buschke, H. (1984). Cued recall in amnesia. Journal of Clinical Neuropsychology, 6(4), 433440.Google Scholar
Butters, N., Granholm, E., Salmon, D.P., Grant, I., & Wolfe, J. (1987). Episodic and semantic memory: A comparison of amnesic and demented patients. Journal of Clinical and Experimental Neuropsychology, 9(5), 479497. doi:10.1080/01688638708410764 Google Scholar
Chua, T.C., Wen, W., Slavin, M.J., & Sachdev, P.S. (2008). Diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease: A review. Current Opinion in Neurology, 21(1), 8392. doi:10.1097/WCO.0b013e3282f4594b Google Scholar
Clark, L.J., Gatz, M., Zheng, L., Chen, Y.L., McCleary, C., & Mack, W.J. (2009). Longitudinal verbal fluency in normal aging, preclinical, and prevalent Alzheimer’s disease. American Journal of Alzheimer’s Disease and Other Dementias, 24(6), 461468. doi:10.1177/1533317509345154 CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: L. Erlbaum Associates.Google Scholar
Crowe, S.F. (1998). Decrease in performance on the verbal fluency test as a function of time: Evaluation in a young healthy sample. Journal of Clinical and Experimental Neuropsychology, 20(3), 391401. doi:10.1076/jcen.20.3.391.810 Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. doi:10.1146/annurev-psych-113011-143750 Google Scholar
Dixon, R.A., Garrett, D.D., Lentz, T.L., MacDonald, S.W., Strauss, E., & Hultsch, D.F. (2007). Neurocognitive markers of cognitive impairment: Exploring the roles of speed and inconsistency. Neuropsychology, 21(3), 381399.CrossRefGoogle ScholarPubMed
Du, A.T., Schuff, N., Amend, D., Laakso, M.P., Hsu, Y.Y., Jagust, W.J., & Weiner, M.W. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 71(4), 441447.Google Scholar
Duff, K., Humphreys Clark, J.D., O’Bryant, S.E., Mold, J.W., Schiffer, R.B., & Sutker, P.B. (2008). Utility of the RBANS in detecting cognitive impairment associated with Alzheimer’s disease: Sensitivity, specificity, and positive and negative predictive powers. Archives of Clinical Neuropsychology, 23(5), 603612. doi:10.1016/j.acn.2008.06.004 Google Scholar
Erten-Lyons, D., Howieson, D., Moore, M.M., Quinn, J., Sexton, G., Silbert, L., & Kaye, J. (2006). Brain volume loss in MCI predicts dementia. Neurology, 66(2), 233235. doi:10.1212/01.wnl.0000194213.50222.1a Google Scholar
Fernaeus, S.E., & Almkvist, O. (1998). Word production: Dissociation of two retrieval modes of semantic memory across time. Journal of Clinical and Experimental Neuropsychology, 20(2), 137143. doi:10.1076/jcen.20.2.137.1170 CrossRefGoogle ScholarPubMed
Fernaeus, S.E., Almkvist, O., Bronge, L., Ostberg, P.A., Winblad, B., & Wahlund, L.O. (2001). White matter lesions impair initiation of FAS flow. Dementia and Geriatric Cognitive Disorders, 12, 5256.Google Scholar
Fernaeus, S.E., Ostberg, P., Hellstrom, A., & Wahlund, L.O. (2008). Cut the coda: Early fluency intervals predict diagnoses. Cortex, 44(2), 161169. doi:10.1016/j.cortex.2006.04.00 Google Scholar
Galvin, J.E., Roe, C.M., Powlishta, K.K., Coats, M.A., Muich, S.J., Grant, E., & Morris, J.C. (2005). The AD8: A brief informant interview to detect dementia. Neurology, 65(4), 559564. doi:10.1212/01.wnl.0000172958.95282.2a CrossRefGoogle ScholarPubMed
Gladsjo, J.A., Heaton, R.K., Palmer, B.W., Taylor, M.J., & Jeste, D.V. (1999). Use of oral reading to estimate premorbid intellectual and neuropsychological functioning. Journal of the International Neuropsychological Society, 5(3), 247254.Google Scholar
Grambaite, R., Selnes, P., Reinvang, I., Aarsland, D., Hessen, E., Gjerstad, L., & Fladby, T. (2011). Executive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tracts. Journal of Alzheimer’s Disease, 27(2), 453462. doi:10.3233/jad-2011-110290 Google Scholar
Haugrud, N., Crossley, M., & Vrbancic, M. (2011). Clustering and switching strategies during verbal fluency performance differentiate Alzheimer’s disease and healthy aging. Journal of the International Neuropsychological Society, 17(6), 11531157. doi:10.1017/S1355617711001196 Google Scholar
Henry, J.D., Crawford, J.R., & Phillips, L.H. (2004). Verbal fluency performance in dementia of the Alzheimer’s type: A meta-analysis. Neuropsychologia, 42(9), 12121222. doi:10.1016/j.neuropsychologia.2004.02.001 Google Scholar
Henry, J.D., & Phillips, L.H. (2006). Covariates of production and perseveration on tests of phonemic, semantic and alternating fluency in normal aging. Neuropsychology, Development, and Cognition. Section B: Aging, Neuropsychology and Cognition, 13(3-4), 529551. doi:10.1080/138255890969537 Google Scholar
Holtzer, R., Goldin, Y., Zimmerman, M., Katz, M., Buschke, H., & Lipton, R.B. (2008). Robust norms for selected neuropsychological tests in older adults. Archives of Clinical Neuropsychology, 23(5), 531541. doi:10.1016/j.acn.2008.05.004 Google Scholar
Holtzer, R., Verghese, J., Wang, C., Hall, C.B., & Lipton, R.B. (2008). Within-person across-neuropsychological test variability and incident dementia. JAMA, 300(7), 823830. doi:10.1001/jama.300.7.823 Google Scholar
Holtzer, R., Wang, C., & Verghese, J. (2014). Performance variance on walking while talking tasks: Theory, findings, and clinical implications. Age (Dordr), 36(1), 373381. doi:10.1007/s11357-013-9570-7 Google Scholar
Hurks, P.P.M., Hendriksen, J.G.M., Vles, J.S.H., Kalff, A.C., Feron, F.J.M., Kroes, M., & Jolles, J. (2004). Verbal fluency over time as a measure of automatic and controlled processing in children with ADHD. Brain and Cognition, 55(3), 535544.Google Scholar
Hurks, P.P., Schrans, D., Meijs, C., Wassenberg, R., Feron, F.J., & Jolles, J. (2010). Developmental changes in semantic verbal fluency: Analyses of word productivity as a function of time, clustering, and switching. Child Neuropsychology, 16(4), 366387. doi:10.1080/09297041003671184 Google Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Philadelphia, PA: Lea & Fibiger.Google Scholar
Katz, S. (1983). Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. Journal of the American Geriatrics Society, 31(12), 721727.Google Scholar
Lezak, M.D., Howieson, D.B., Loring, D.W., Hannay, H.J., & Fischer, J.S. (2004). Neuropsychological assessment. Oxford, NY: Oxford University Press.Google Scholar
Lipton, R.B., Katz, M.J., Kuslansky, G., Sliwinski, M.J., Stewart, W.F., Verghese, J., & Buschke, H. (2003). Screening for dementia by telephone using the memory impairment screen. Journal of the American Geriatrics Society, 51(10), 13821390.Google Scholar
Malek-Ahmadi, M., Small, B.J., & Raj, A. (2011). The diagnostic value of controlled oral word association test-FAS and category fluency in single-domain amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 32(4), 235240. doi:10.1159/000334525 Google Scholar
Martin, A., Wiggs, C.L., Lalonde, F., & Mack, C. (1994). Word retrieval to letter and semantic cues: A double dissociation in normal subjects using interference tasks. Neuropsychologia, 32(12), 14871494.Google Scholar
Mayr, U., & Kliegl, R. (2000). Complex semantic processing in old age: Does it stay or does it go? Psychology and Aging, 15(1), 2943.Google Scholar
McDowd, J., Hoffman, L., Rozek, E., Lyons, K.E., Pahwa, R., Burns, J., & Kemper, S. (2011). Understanding verbal fluency in healthy aging, Alzheimer’s disease, and Parkinson’s disease. Neuropsychology, 25(2), 210225. doi:10.1037/a0021531 Google Scholar
Monsch, A.U., Bondi, M.W., Butters, N., Paulsen, J.S., Salmon, D.P., Brugger, P., & Swenson, M.R. (1994). A comparison of category and letter fluency in Alzheimer’s disease and Huntington’s disease. Neuropsychology, 8(1), 2530.Google Scholar
Murphy, K.J., Rich, J.B., & Troyer, A.K. (2006). Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer’s type dementia. Journal of the International Neuropsychological Society, 12(4), 570574.Google Scholar
Nutter-Upham, K.E., Saykin, A.J., Rabin, L.A., Roth, R.M., Wishart, H.A., Pare, N., & Flashman, L.A. (2008). Verbal fluency performance in amnestic MCI and older adults with cognitive complaints. Archives of Clinical Neuropsychology, 23(3), 229241. doi:10.1016/j.acn.2008.01.005 Google Scholar
Ober, B.A., Dronkers, N.F., Koss, E., Delis, D.C., & Friedland, R.P. (1986). Retrieval from semantic memory in Alzheimer-type dementia. Journal of Clinical and Experimental Neuropsychology, 8(1), 7592. doi:10.1080/01688638608401298 Google Scholar
Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen, P., Hanninen, T., Laakso, M.P., & Soininen, H. (2004). Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiology of Aging, 25(3), 303310. doi:10.1016/s0197-4580(03)00084-8 CrossRefGoogle ScholarPubMed
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183194. doi:10.1111/j.1365-2796.2004.01388.x Google Scholar
Petersen, R.C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014). Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine, 275(3), 214228. doi:10.1111/joim.12190 Google Scholar
Petersen, R.C., Parisi, J.E., Dickson, D.W., Johnson, K.A., Knopman, D.S., Boeve, B.F., & Kokmen, E. (2006). Neuropathologic features of amnestic mild cognitive impairment. Archives of Neurology, 63(5), 665672.Google Scholar
Price, S.E., Kinsella, G.J., Ong, B., Storey, E., Mullaly, E., Phillips, M., & Perre, D. (2012). Semantic verbal fluency strategies in amnestic mild cognitive impairment. Neuropsychology, 26(4), 490497. doi:10.1037/a0028567 Google Scholar
Raboutet, C., Sauzeon, H., Corsini, M.M., Rodrigues, J., Langevin, S., & N’Kaoua, B. (2010). Performance on a semantic verbal fluency task across time: Dissociation between clustering, switching, and categorical exploitation processes. Journal of Clinical and Experimental Neuropsychology, 32(3), 268280. doi:10.1080/13803390902984464 Google Scholar
Radanovic, M., Diniz, B. S., Mirandez, R.M., Novaretti, T. M., Flacks, M. K., Yassuda, M. S., & Forlenza, O.V. (2009). Verbal fluency in the detection of mild cognitive impairment and Alzheimer’s disease among Brazilian Portuguese speakers: The influence of education. International Psychogeriatrics, 21(6), 10811087. doi:10.1017/s1041610209990639 Google Scholar
Randolph, C. (2012). Repeatable battery for the assessment of neuropsychological status update (RBANS Update). San Antonio, TX: The Psychological Corporation.Google Scholar
Raz, N., & Rodrigue, K.M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30(6), 730748. doi:10.1016/j.neubiorev.2006.07.001 Google Scholar
Roberts, R.O., Knopman, D.S., Mielke, M.M., Cha, R.H., Pankratz, V.S., Christianson, T.J., & Petersen, R.C. (2014). Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology, 82(4), 317325. doi:10.1212/wnl.0000000000000055 Google Scholar
Smith, P.T., & Claxton, G.L. (1972, April). Lexical search and phonemic organisation in memory. Paper presented to the Experimental Psychology Society, London.Google Scholar
Spreen, O., & Benton, A.L. (1977). Neurosensory center comprehensive examination for aphasia: Manual of directions. Victoria, British Columbia: University of Victoria.Google Scholar
Stern, Y., Andrews, H., Pittman, J., Sano, M., Tatemichi, T., Lantigua, R., & Mayeux, R. (1992). Diagnosis of dementia in a heterogeneous population. Development of a neuropsychological paradigm-based diagnosis of dementia and quantified correction for the effects of education. Archives of Neurology, 49(5), 453460.CrossRefGoogle Scholar
Sullivan, E.V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30(6), 749761. doi:http://dx.doi.org/10.1016/j.neubiorev.2006.06.002 Google Scholar
Summers, M.J., & Saunders, N.L. (2012). Neuropsychological measures predict decline to Alzheimer’s dementia from mild cognitive impairment. Neuropsychology, 26(4), 498508. doi:10.1037/a0028576 Google Scholar
Teng, E., Leone-Friedman, J., Lee, G.J., Woo, S., Apostolova, L.G., Harrell, S., & Lu, P.H. (2013). Similar verbal fluency patterns in amnestic mild cognitive impairment and Alzheimer’s disease. Archives of Clinical Neuropsychology, 28(5), 400410. doi:10.1093/arclin/act039 Google Scholar
Traykov, L., Raoux, N., Latour, F., Gallo, L., Hanon, O., Baudic, S., & Rigaud, A.-S. (2007). Executive functions deficit in mild cognitive impairment. Cognitive and Behavioral Neurology, 20(4), 219224. doi:10.1097/WNN.0b013e31815e6254 Google Scholar
Wang, L., Goldstein, F.C., Veledar, E., Levey, A.I., Lah, J.J., Meltzer, C.C., & Mao, H. (2009). Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole brain cortical thickness mapping and diffusion tensor imaging. AJNR. American Journal of Neuroradiology, 30(5), 893899. doi:10.3174/ajnr.A1484 Google Scholar
Weakley, A., Schmitter-Edgecombe, M., & Anderson, J. (2013). Analysis of verbal fluency ability in amnestic and non-amnestic mild cognitive impairment. Archives of Clinical Neuropsychology, 28(7), 721731. doi:10.1093/arclin/act058 Google Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale-Revised. New York: The Psychological Corporation.Google Scholar
Wechsler, D. (2001). Wechsler Test of Adult Reading. San Antonio, TX: The Psychological Corporation.Google Scholar
Wilkinson, G.S., & Robertson, G.J. (2006). Wide Range Achievement Test-4 (WRAT-4). Lutz, FL: Psychological Assessment Resources.Google Scholar
Wilson, R.S., Leurgans, S.E., Boyle, P.A., & Bennett, D.A. (2011). Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. Archives of Neurology, 68(3), 351356. doi:10.1001/archneurol.2011.31 CrossRefGoogle ScholarPubMed
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., & Petersen, R. C. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240246. doi:10.1111/j.1365-2796.2004.01380.x Google Scholar
Wolf, H., Hensel, A., Kruggel, F., Riedel-Heller, S.G., Arendt, T., Wahlund, L.O., & Gertz, H.J. (2004). Structural correlates of mild cognitive impairment. Neurobiology of Aging, 25(7), 913924. doi:10.1016/j.neurobiolaging.2003.08.006 Google Scholar
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., & Leirer, V.O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 3749.Google Scholar