Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T10:15:12.826Z Has data issue: false hasContentIssue false

A Meta-Analysis of Neuropsychological Functioning in the Logopenic Variant of Primary Progressive Aphasia: Comparison with the Semantic and Non-Fluent Variants

Published online by Cambridge University Press:  29 October 2019

Vidyulata Kamath*
Affiliation:
Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
Emily R. Sutherland
Affiliation:
Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
Grace-Anna Chaney
Affiliation:
Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
*
*Correspondence and reprint requests to: Vidyulata Kamath, 600 N. Wolfe Street, Meyer 218, Baltimore, MD 21287-7218, USA. E-mail: [email protected]

Abstract

Objectives:

The logopenic variant of primary progressive aphasia (lvPPA) has disparate pathological and anatomical features when compared to the semantic (svPPA) and non-fluent (nfvPPA) variants of PPA. As such, there is increasing need for measures that improve diagnostic accuracy particularly when etiology-specific treatments become available. In the current study, we used meta-analytic methods to establish the neuropsychological profile of lvPPA and compare it to recent findings in svPPA and nfvPPA.

Methods:

We extracted neuropsychological data from 51 publications representing 663 lvPPA patients and 1379 controls. We calculated Hedges’ g effect sizes for nine domains of neuropsychological functioning in lvPPA and assessed the influence of demographic, disease, and task characteristics on effect size magnitude. Results obtained in lvPPA were compared to findings in svPPA and nfvPPA.

Results:

In lvPPA, the magnitude of deficits in attention, math, visuospatial memory, and executive functioning were as prominent as language deficits. Within the language domain, lvPPA patients demonstrated greater naming than repetition deficits. Compared to svPPA and nfvPPA, lvPPA patients demonstrated greater neuropsychological deficits overall and greater impairment on attention, math, and visual set-shifting tests.

Conclusions:

Tests of attention, delayed visuospatial memory, visual set-shifting, and math distinguish lvPPA from svPPA and nfvPPA likely reflecting the posterior temporoparietal atrophy observed early in the course of lvPPA. These findings support the inclusion of these measures in the clinical neuropsychological assessment of lvPPA and underscore the need for additional clinicopathological and longitudinal studies of arithmetic and visuospatial memory across the PPA variants.

Type
Critical Review
Copyright
Copyright © INS. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Begg, C.B. & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 10881101.CrossRefGoogle Scholar
Bird, C.M., Chan, D., Hartley, T., Pijnenburg, Y.A., Rossor, M.N., & Burgess, N. (2009). Topographical short-term memory differentiates Alzheimer’s disease from frontotemporal lobar degeneration. Hippocampus, 20(10), 11541169. doi:10.1002/hipo.20715CrossRefGoogle Scholar
Bora, E., Velakoulis, D., & Walterfang, M. (2016). Meta-analysis of facial emotion recognition in behavioral variant frontotemporal dementia: Comparison with Alzheimer disease and healthy controls. Journal of Geriatric Psychiatry and Neurology, 29(4), 205211. doi:10.1177/0891988716640375CrossRefGoogle ScholarPubMed
Bora, E., Walterfang, M., & Velakoulis, D. (2015). Theory of mind in behavioural-variant frontotemporal dementia and Alzheimer’s disease: A meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 86(7), 714719. doi:10.1136/jnnp-2014-309445CrossRefGoogle ScholarPubMed
Borenstein, M., Hedges, L.V., Higgins, J.P.T., & Rothstein, H.R. (2009). Introduction to Meta-Analysis (1st ed.). Chichester: Wiley.CrossRefGoogle Scholar
Brambati, S.M., Amici, S., Racine, C.A., Neuhaus, J., Miller, Z., Ogar, J., Dronkers, N., Miller, B.L., Rosen, H., & Gorno-Tempini, M.L. (2015). Longitudinal gray matter contraction in three variants of primary progressive aphasia: A tenser-based morphometry study. NeuroImage Clinical, 8, 345355. doi:10.1016/j.nicl.2015.01.011CrossRefGoogle ScholarPubMed
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical Research Ed.), 315(7109), 629634.CrossRefGoogle ScholarPubMed
Eikelboom, W.S., Janssen, N., Jiskoot, L.C., van den Berg, E., Roelofs, A., & Kessels, R.P.C. (2018). Episodic and working memory function in primary progressive aphasia: A meta-analysis. Neuroscience and Biobehavioral Reviews, 92, 243254. doi:10.1016/j.neubiorev.2018.06.015CrossRefGoogle ScholarPubMed
Flanagan, E.C., Tu, S., Ahmed, S., Hodges, J.R., & Hornberger, M. (2014). Memory and orientation in the logopenic and nonfluent subtypes of primary progressive aphasia. Journal of Alzheimer’s Disease, 40, 3336.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Ogar, J.M., Rohrer, J.D., Black, S., Boeve, B.F., Manes, F., Dronkers, N.F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B.L., Knopman, D.S., Hodges, J.R., Mesulam, M.M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014. doi:10.1212/WNL.0b013e31821103e6CrossRefGoogle ScholarPubMed
Grossman, M. (2018). Linguistic aspects of primary progressive aphasia. Annual Review of Linguistics, 4(1), 377403. doi:10.1146/annurev-linguistics-011516-034253CrossRefGoogle ScholarPubMed
Grossman, M., Xie, S.X., Libon, D.J., Wang, X., Massimo, L., Moore, P., Vesely, L., Berkowitz, R., Chatterjee, A., Coslett, H.B., Hurtig, H.I., Forman, M.S., Lee, VM-Y., & Trojanowski, J.Q. (2008). Longitudinal decline in autopsy-defined frontotemporal lobar degeneration. Neurology, 70, 20362045.CrossRefGoogle ScholarPubMed
Kamath, V., Chaney, G.S., DeRight, J.F., & Onyike, C.U. (in press). A meta-analysis of neuropsychological, social cognitive and olfactory functioning in the behavioral and language variants of frontotemporal dementia. Psychological Medicine. doi:10.1017/S0033291718003604CrossRefGoogle Scholar
LaMarre, A.K. & Kramer, J.H. (2013). Accurate assessment of behavioral variant frontotemporal dementia, In Ravdin, L.D. & Katzen, H.L. (Eds.), Handbook on the neuropsychology of aging and dementia (pp. 313332). New York, NY: Springer Science.Google Scholar
Leyton, C.E., Hsieh, S., Mioshi, E., & Hodges, J.R. (2013). Cognitive decline in logopenic aphasia: More than losing words. Neurology, 80(10), 897903. doi:10.1212/WNL.0b013e318285c15bCrossRefGoogle ScholarPubMed
Louwersheimer, E., Keulen, M.A., Steenwijk, M.D., Wattjes, M.P., Jiskoot, L.C., Vrenken, H., Teunissen, CE, van Berckel, BN, van der Flier, WM, Scheltens, P, van Swieten, JC, & Pijnenburg, Y.A.L. (2016). Heterogeneous language profiles in patients with primary progressive aphasia due to Alzheimer’s disease. Journal of Alzheimer’s Disease, 51(2), 581590. doi:10.3233/JAD-150812CrossRefGoogle ScholarPubMed
Lukic, S., Mandelli, M.L., Welch, A., Jordan, K., Shwe, W., Neuhaus, J., Miller, Z, Hubbard, HI, Henry, M, Miller, BL, Dronkers, NF, & Gorno-Tempini, M.L. (2019). Neurocognitive basis of repetition deficits in primary progressive aphasia. Brain and Language, 194, 3545. doi:10.1016/j.bandl.2019.04.003CrossRefGoogle ScholarPubMed
Mesulam, M., Wicklund, A., Johnson, N., Rogalski, E., Léger, G.C., Rademaker, A., Weintraub, S., & Bigio, E.H. (2008). Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annals of Neurology, 63(6), 709719. doi:10.1002/ana.21388CrossRefGoogle ScholarPubMed
Mesulam, M.-M., Rogalski, E.J., Wieneke, C., Hurley, R.S., Geula, C., Bigio, E.H., Thompson, C.K., & Weintraub, S. (2014). Primary progressive aphasia and the evolving neurology of the language network. Nature Reviews Neurology, 10(10), 554569. doi:10.1038/nrneurol.2014.159CrossRefGoogle ScholarPubMed
Ramanan, S., Flanagan, E., Leyton, C.E., Villemagne, V.L., Rowe, C.C., Hodges, J.R., & Hornberger, M. (2016). Non-verbal episodic memory deficits in primary progressive aphasias are highly predictive of underlying amyloid pathology. Journal of Alzheimer’s Disease, 51(2), 367376. doi:10.3233/JAD-150752CrossRefGoogle ScholarPubMed
Rohrer, J.D., Caso, F., Mahoney, C., Henry, M., Rosen, H.J., Rabinovici, G., Rossor, M.N., Miller, B., Warren, J.D., Fox, N.C., Ridgway, G.R., & Gorno-Tempini, M.L. (2013). Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia. Brain and Language, 127(2), 121126. doi:10.1016/j.bandl.2012.12.008CrossRefGoogle ScholarPubMed
Rohrer, J.D., Ridgway, G.R., Crutch, S.J., Hailstone, J., Goll, J.C., Clarkson, M.J., Mead, S., Beck, J., Mummery, C., Ourselin, S., Warrington, E.K., Rossor, M.N., & Warren, J.D. (2010). Progressive logopenic/phonological aphasia: Erosion of the language network. NeuroImage, 49(1), 984993. doi:10.1016/j.neuroimage.2009.08.002CrossRefGoogle ScholarPubMed
Sajjadi, S.A., Patterson, K., Arnold, R.J., Watson, P.C., & Nestor, P.J. (2012). Primary progressive aphasia: A tale of two syndromes and the rest. Neurology, 78(21), 16701677. doi:10.1212/WNL.0b013e3182574f79CrossRefGoogle Scholar
Santos-Santos, M.A., Rabinovici, G.D., Iaccarino, L., Ayakta, N., Tammewar, G., Lobach, I., Henry, M.L., Hubbard, I., Mandelli, M.L., Spinelli, E., Miller, Z.A., Pressman, P.S., O&Neil, J.P., Ghosh, P., Lazaris, A., Meyer, M., Watson, C., Yoon, S.J., Rosen, H.J., Grinberg, L., Seeley, W.W., Miller, B.L., Jagust, W.J., & Gorno-Tempini, M.L. (2018). Rates of amyloid imaging positivity in patients with primary progressive aphasia. JAMA Neurology, 75(3), 342352. doi:10.1001/jamaneurol.2017.4309CrossRefGoogle ScholarPubMed
Smits, L.L., Pijnenburg, Y.A.L., Koedam, E.L.G.E., van der Vlies, A.E., Reuling, I.E.W., Koene, T., Scheltens, P., & van der Flier, W.M. (2012). Early onset Alzheimer’s disease is associated with a distinct neuropsychological profile. Journal of Alzheimer’s Disease, 30(1), 101108. doi:10.3233/JAD-2012-111934CrossRefGoogle ScholarPubMed
Tobias, A. (1999). Assessing the influence of a single study in the meta-analysis estimate. Stata Technical Bulletin, 8(47), 1517.Google Scholar
Tu, S., Wong, S., Hodges, J.R., Irish, M., Piguet, O., & Hornberger, M. (2015). Lost in spatial translation – A novel tool to objectively assess spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex, 67, 8394. doi:10.1016/j.cortex.2015.03.016CrossRefGoogle ScholarPubMed
Turner, R.M., Bird, S.M., & Higgins, J.P.T. (2013). The impact of study size on meta-analyses: Examination of underpowered studies in Cochrane reviews. PloS One, 8(3), e59202. doi:10.1371/journal.pone.0059202CrossRefGoogle ScholarPubMed
Varjacic, A., Mantini, D., Demeyere, N., & Gillebert, C.R. (2018). Neural signatures of Trail Making Test performance: Evidence from lesion-mapping and neuroimaging studies. Neuropsychologia, 115, 7887. doi:10.1016/j.neuropsychologia.2018.03.031CrossRefGoogle ScholarPubMed
Watson, C.L., Possin, K., Allen, I.E., Hubbard, H.I., Meyer, M., Welch, A.E., Rabinovici, G.D., Rosen, H., Rankin, K.P., Miller, Z., Santos-Santos, M.A., Kramer, J.H., Miller, B.L., & Gorno-Tempini, M.L. (2018). Visuospatial functioning in the primary progressive aphasias. Journal of the International Neuropsychological Society, 24(3), 259268. doi:10.1017/S1355617717000984CrossRefGoogle ScholarPubMed
Wicklund, M.R., Duffy, J.R., Strand, E.A., Machulda, M.M., Whitwell, J.L., & Josephs, K.A. (2014). Quantitative application of the primary progressive aphasia consensus criteria. Neurology, 82(13), 11191126. doi:10.1212/WNL.0000000000000261CrossRefGoogle ScholarPubMed
Supplementary material: File

Kamath et al. supplementary material

Kamath et al. supplementary material

Download Kamath et al. supplementary material(File)
File 174.6 KB