Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T20:26:22.749Z Has data issue: false hasContentIssue false

Evolving Notions of Schizophrenia as a Developmental Neurocognitive Disorder

Published online by Cambridge University Press:  04 December 2017

Larry J. Seidman*
Affiliation:
Harvard Medical School, Department of Psychiatry, Massachusetts Mental Health Center Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
Allan F. Mirsky
Affiliation:
Walter Reed National Military Medical Center, Bethesda, Maryland
*
Correspondence and reprint requests to: Jayne-Marie Nova, Commonwealth Research Center, Massachusetts Mental Health Center, 75 Fenwood Road, Boston, Massachusetts. E-mail: [email protected]

Abstract

We review the changing conceptions of schizophrenia over the past 50 years as it became understood as a disorder of brain function and structure in which neurocognitive dysfunction was identified at different illness phases. The centrality of neurocognition has been recognized, especially because neurocognitive deficits are strongly related to social and role functioning in the illness, and as a result neurocognitive measures are used routinely in clinical assessment of individuals with schizophrenia. From the original definitions of the syndrome of schizophrenia in the early 20th century, impaired cognition, especially attention, was considered to be important. Neurocognitive impairments are found in the vast majority of individuals with schizophrenia, and they vary from mild, relatively restricted deficits, to dementia-like syndromes, as early as the first psychotic episode. Neurocognitive deficits are found in the premorbid phase in a substantial minority of pre-teenage youth who later develop schizophrenia, and they apparently worsen by the prodromal, high-risk phase in a majority of those who develop the illness. While there is limited evidence for reversibility of impairments from pharmacological interventions in schizophrenia, promising results have emerged from cognitive remediation studies. Thus, we expect cognitive interventions to play a larger role in schizophrenia in the coming years. Moreover, because youth at risk for schizophrenia can be identified by an emergent high-risk syndrome, earlier interventions might be applied in a pre-emptive way to reduce disability and improve adaptation. The notion of schizophrenia as a developmental neurocognitive disorder with stages opens up a window of possibilities for earlier interventions. (JINS, 2017, 23, 881–892)

Type
Section 3 – Neuropsychiatric Disorders
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased.

References

REFERENCES

Agnew-Blais, J., & Seidman, L.J. (2013). Neurocognition in youth and young adults under age 30 at familial risk for schizophrenia: A quantitative and qualitative review. Cognitive Neuropsychiatry, 18, 4482.Google Scholar
Agnew-Blais, J., Seidman, L.J., Fitzmaurice, G.M., Smoller, J.W., Goldstein, J.M., & Buka, S.L. (2017). The interplay of childhood behavior problems and IQ in the development of later schizophrenia and affective psychoses. Schizophrenia Research, 184, 4551.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 5th edition (DSM-5). Arlington, VA: American Psychiatric Publishing.Google Scholar
Barch, D.M. (2005). The cognitive neuroscience of schizophrenia. Annual Review of Clinical Psychology, 1, 321353.CrossRefGoogle ScholarPubMed
Barder, H.E., Sundet, K., Rund, B.R., Evensen, J., Haahr, U., Ten Velden, H.W., & Friis, S. (2013a). Neurocognitive development in first episode psychosis 5 years follow-up: Associations between illness severity and cognitive course. Schizophrenia Research, 149, 6369.CrossRefGoogle ScholarPubMed
Barder, H.E., Sundet, K., Rund, B.R., Evensen, J., Haahr, U., Ten Velden, H.W., & Friis, S. (2013b). Ten year neurocognitive trajectories in first-episode psychosis. Frontiers in Human Neuroscience, 7, 643.Google Scholar
Bigdeli, T.B., Ripke, S., Bacanu, S.A., Lee, S.H., Wray, N.R., Gejman, P.V., ... Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2016). Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. American Journal of Medical Genetics B Neuropsychiatric Genetics, 171B, 276289.Google Scholar
Bleuler, E. (1950). Dementia praecox or the group of schizophrenias. New York, NY: International Universities Press.Google Scholar
Bora, E., & Murray, R.M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: Do the cognitive deficits progress over, or after, the onset of psychosis? Schizophrenia Bulletin, 40, 744755.Google Scholar
Braff, D.L., Freedman, R., Schork, N.J., & Gottesman, I.I. (2007). Deconstructing schizophrenia: An overview of the use of endophenotypes in order to understand a complex disorder. Schizophrenia Bulletin, 33, 2132.CrossRefGoogle ScholarPubMed
Brown, A.S. (2011). The environment and susceptibility to schizophrenia. Progress in Neurobiology, 93, 2358.Google Scholar
Buchsbaum, M., Mirsky, A.F., DeLisi, L.E., Morihisa, J., Karson, C.N., Mendelson, W.B., & Kessler, R. (1984). The Genain Quadruplets: Electrophysiological, positron emission, and X-ray tomographic studies. Psychiatry Research, 13, 95108.CrossRefGoogle ScholarPubMed
Cannon, M., Caspi, A., Moffitt, T.E., Harrington, H., Taylor, A., Murray, R.M., & Poulton, R. (2002). Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: Results from a longitudinal birth cohort. Archives of General Psychiatry, 59, 449456.CrossRefGoogle ScholarPubMed
Cannon, T.D., van Erp, T.G., Bearden, C.E., Loewy, R., Thompson, P., Toga, A., & Tsuang, M.T. (2003). Early and late neurodevelopmental influences in the prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophrenia Bulletin, 29, 653669.CrossRefGoogle ScholarPubMed
Cannon, T.D., Cadenhead, K., Cornblatt, B., Woods, S.W., Addington, J., Walker, E., & Heinssen, R. (2008). Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America. Archives of General Psychiatry, 65, 2837.Google Scholar
Cannon, T.D., Chung, Y., He, G., Sun, D., Jacobson, A., van Erp, T.G., & Heinssen, R. (2015). Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77, 147157.Google Scholar
Cannon, T.D., Yu, C., Addington, J., Bearden, C.E., Cadenhead, K.S., Cornblatt, B.A., & Kattan, M.W. (2016). An individualized risk calculator for research in prodromal psychosis. American Journal of Psychiatry, 173, 980988.Google Scholar
Caspi, A., Reichenberg, A., Weiser, M., Rabinowitz, J., Kaplan, Z., Knobler, H., & Davidson, M. (2003). Cognitive performance in schizophrenia patients assessed before and following the first psychotic episode. Schizophrenia Research, 65, 8794.CrossRefGoogle ScholarPubMed
Clementz, B.A., Sweeney, J.A., Hamm, J.P., Ivleva, E.I., Etheridge, L.E., Pearlson, G.D., & Tamminga, C.A. (2016). Identification of distinct psychosis biotypes using brain-based biomarkers. American Journal of Psychiatry, 173, 373384.CrossRefGoogle ScholarPubMed
Cornblatt, B., Risch, N.J., Faris, G., Friedman, D., & Erlenmeyer-Kimling, L. (1988). The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Research, 26, 223238.Google Scholar
Cornblatt, B.A., & Keilp, J.G. (1994). Impaired attention, genetics and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 20, 3146.Google Scholar
Duncan-Johnson, C.C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14, 456467.CrossRefGoogle ScholarPubMed
Duncan, C.C., Perlstein, W.M., & Morihisa, J.M. (1987). The P300 metric in schizophrenia: Effects of probability and modality. In: R. Johnson, Jr., J.W. Rohrbaugh & R. Parasuraman (Eds.), Current trends in event- related potential research (EEG Supplement 40; pp. 670674). Amsterdam: Elsevier Science Publishers.Google Scholar
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17, 319334.Google Scholar
Fish, B. (1977). Neurobiologic antecedents of schizophrenia in children. Evidence for an inherited, congenital neurointegrative defect. Archives of General Psychiatry, 34, 12971313.Google Scholar
Freedman, R., Adler, L.E., Gerhardt, G.A., Waldo, M., Baker, N., Rose, G.M., & Franks, R. (1987). Neurobiological studies of sensory gating in schizophrenia. Schizophrenia Bulletin, 13, 669678.Google Scholar
Fuller, R., Nopoulos, P., Arndt, S., O’Leary, D., Ho, B.C., & Andreasen, N.C. (2002). Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. American Journal of Psychiatry, 159, 11831189.CrossRefGoogle ScholarPubMed
Giuliano, A.J., Li, H., Mesholam-Gately, R.I., Sorenson, S.M., Woodberry, K.A., & Seidman, L.J. (2012). Neurocognition in the psychosis risk syndrome: A quantitative and qualitative review. Current Pharmaceutical Design, 18, 399415.CrossRefGoogle ScholarPubMed
Glahn, D.C., Ragland, J.D., Abramoff, A., Barrett, J., Laird, A.R., Bearden, C.E., & Velligan, D.I. (2005). Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapping, 25, 6069.CrossRefGoogle ScholarPubMed
Goldberg, T.E., Weinberger, D.R., Berman, K.F., Pliskin, N.H., & Podd, M.H. (1987). Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Archives of General Psychiatry, 44, 10081014.Google Scholar
Gottesman, I.I., & Shields, J. (1972). Schizophrenia and genetics: A twin study vantage point. New York, NY: Academic Press.Google Scholar
Green, M.F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? American Journal of Psychiatry, 153, 321330.Google Scholar
Green, M.F., Horan, W.P., & Lee, J. (2015). Social cognition in schizophrenia. Nature Reviews Neuroscience, 16, 620631.Google Scholar
Gur, R.E., Calkins, M.E., Gur, R.C., Horan, W.P., Neuchterlein, K.H., Seidman, L.J., & Stone, W.S. (2007). The Consortium on the Genetics of Schizophrenia (COGS): Neurocognitive endophenotypes. Schizophrenia Bulletin, 33, 4968.Google Scholar
Hall, M.H., Taylor, G., Sham, P., Schulze, K., Rijsdijk, F., Picchioni, M., & Salisbury, D.F. (2011). The early auditory gamma-band response is heritable and a putative endophenotype of schizophrenia. Schizophrenia Bulletin, 37, 778787.Google Scholar
Heinrichs, R., & Zakzanis, K. (1998). Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 12, 426445.Google Scholar
Hooker, C.H., Carol, E.E., Eisenstein, T.J., Yin, H., Lincoln, S.H., Tully, L.M., & Seidman, L.J. (2014). A pilot study of cognitive training in clinical high risk for psychosis: Initial evidence of cognitive benefit. Schizophrenia Research, 157, 314316.CrossRefGoogle ScholarPubMed
Johnstone, E.C., Crow, T.J., Frith, C.D., Husband, J., & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. The Lancet, 2(7992), 924926.Google Scholar
Kahn, R., & Keefe, R.S.E. (2013). Schizophrenia is a cognitive illness: Time for a change in focus. JAMA Psychiatry, 70, 11071112.Google Scholar
Keshavan, M.S., Anderson, S., & Pettegrew, J.W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. Journal of Psychiatric Research, 28, 239265.Google Scholar
Keshavan, M.S., DeLisi, L.E., & Seidman, L.J. (2011). Early and broadly defined psychosis risk mental states. Schizophrenia Research, 126, 110.Google Scholar
Keshavan, M.S., Vinogradov, S., Rumsey, J., Sherrill, J., & Wagner, A. (2014). Cognitive training in mental disorders: Update and future directions. American Journal of Psychiatry, 171, 510522.Google Scholar
Kety, S.S., Rosenthal, D., Wender, P.H., & Schulsinger, F. (1971). Mental illness in the biological and adoptive families of adopted schizophrenics. American Journal of Psychiatry, 128, 302306.Google Scholar
Kornetsky, C., & Mirsky, A.F. (1966). On certain psychopharmacological and physiological differences between schizophrenic and normal persons. Psychopharmacologia, 8, 309309.Google Scholar
Kraepelin, E. (1919). Dementia praecox and paraphrenia. Edinburgh, Scotland: E. & S. Livingstone.Google Scholar
Kremen, W.S., Seidman, L.J., Faraone, S.V., Toomey, R., & Tsuang, M.T. (2000). The paradox of normal neuropsychological function in schizophrenia. Journal of Abnormal Psychology, 109, 743752.Google Scholar
Kremen, W.S., Seidman, L.J., Faraone, S.V., Toomey, R., & Tsuang, M.T. (2004). Heterogeneity of schizophrenia: A study of individual neuropsychological profiles. Schizophrenia Research, 71, 307321.CrossRefGoogle ScholarPubMed
Kremen, W.S., Vinogradov, S., Poole, J.H., Schaefer, C.A., Deicken, R.F., Factor-Litvak, P., & Brown, A.S. (2010). Cognitive decline in schizophrenia from childhood to midlife: A 33-year longitudinal birth cohort study. Schizophrenia Research, 118, 15.Google Scholar
Leicht, G., Karch, S., Karamatskos, E., Giegling, I., Moller, H.J., Hegerl, U., & Mulert, C. (2011). Alterations of the early auditory evoked gamma-band response in first-degree relatives of patients with schizophrenia: Hints to a new intermediate phenotype. Journal of Psychiatric Research, 45, 699705.Google Scholar
Levin, S. (1984). Frontal lobe dysfunctions in schizophrenia—II. Impairments of psychological and brain functions. Journal of Psychiatric Research, 18, 5772.Google Scholar
Liddle, P.F. (1987). The symptoms of chronic schizophrenia: A re-examination of the positive–negative dichotomy. British Journal of Psychiatry, 151, 145151.Google Scholar
Liu, C.H., Keshavan, M.S., Tronick, E., & Seidman, L.J. (2015). Perinatal risks and childhood premorbid indicators of later psychosis: Next steps for early psychosocial intervention. Schizophrenia Bulletin, 41, 801816.Google Scholar
MacCabe, J.H., Wicks, S., Lofving, S., David, A.S., Berndtsson, A., Gustafsson, J.E., & Dalman, C. (2013). Decline in cognitive performance between ages 13 and 18 years and the risk for psychosis in adulthood: A Swedish longitudinal cohort study in males. JAMA Psychiatry, 70, 261270.Google Scholar
MacDonald, A., Thermenos, H.W., Barch, D., & Seidman, L.J. (2009). Imaging genetic liability to schizophrenia: Systematic review of fMRI studies of patients’ non-psychotic relatives. Schizophrenia Bulletin, 35, 11421162.Google Scholar
McGlashan, T.H., & Johannessen, J.O. (1996). Early detection and intervention with schizophrenia: Rationale. Schizophrenia Bulletin, 22, 201222.Google Scholar
McGlashan, T.H., Walsh, B.C., & Woods, S.W. (2010). The psychosis-risk syndrome: Handbook for diagnosis and follow-up. New York, NY: Oxford University Press.Google Scholar
McGorry, P.D., Hickie, I.B., Yung, A.R., Pantelis, C., & Jackson, H.J. (2006). Clinical staging of psychiatric disorders: A heuristic framework for choosing earlier, safer and more effective interventions. Australian and New Zealand Journal of Psychiatry, 40, 616622.CrossRefGoogle ScholarPubMed
Meier, M.H., Caspi, A., Reichenberg, A., Keefe, R.S.E., Fisher, H.L., Harrington, H., & Moffitt, T.E. (2014). Neuropsychological decline in schizophrenia from the premorbid to the postonset period: Evidence from a population-representative longitudinal study. American Journal of Psychiatry, 171, 91101.CrossRefGoogle Scholar
Mesholam-Gately, R., Giuliano, A.J., Goff, K.P., Faraone, S.V., & Seidman, L.J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neuropsychology, 23, 315336.Google Scholar
Mirsky, A.F. (1969). Neuropsychological bases of schizophrenia. Annual Review of Psychology, 20, 321348.Google Scholar
Mirsky, A.F. (1988). The Israeli high-risk study. In D.L. Dunner, J.E. Barrett & E.S. Gershon (Eds.), Relatives at risk for mental disorders (pp 279297). New York, NY: Raven Press.Google Scholar
Mirsky, A.F., & Quinn, O.W. (1988). The Genain quadruplets. Schizophrenia Bulletin, 14, 595612.Google Scholar
Mirsky, A.F., Anthony, B.J., Duncan, C.C., Ahearn, M.B., & Kellam, S.G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2, 109145.Google Scholar
Mirsky, A.F., Yardley, S.L., Jones, B.P., Walsh, D., & Kendler, K.S. (1995). Analysis of the attention deficit in schizophrenia--A study of patients and their relatives in Ireland. Journal of Psychiatric Research, 29, 2342.Google Scholar
Mirsky, A.F., & Duncan, C.C. (2004). A neuropsychological perspective on vulnerability to schizophrenia: Lessons from high-risk studies. In W.S. Stone, S.V. Faraone & M.T. Tsuang (Eds.), Early clinical intervention and prevention in schizophrenia (pp. 115132). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
Murray, R., & Lewis, S. (1987). Is schizophrenia a neurodevelopmental disorder? British Medical Journal (Clinical Research Education), 295, 681682.CrossRefGoogle ScholarPubMed
Nuechterlein, K.H., & Dawson, M.E. (1984). Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10, 160203.Google Scholar
Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., & Marder, S.R. (2008). The MATRICS consensus cognitive battery, part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165, 203213.Google Scholar
Palmer, B.W., Heaton, R.K., Paulsen, J.S., Kuck, J., Braff, D., Harris, M.J., & Jeste, D.V. (1997). Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology, 11, 437446.Google Scholar
Park, S., & Gooding, D.C. (2014). Working memory impairment as an endophenotypic marker of a schizophrenia diathesis. Schizophrenia Research in Cognition, 1, 127136.CrossRefGoogle ScholarPubMed
Plum, F. (1972). Prospects for research on schizophrenia. 3. Neurophysiology. Neuropathological findings. Neuroscience Research Program Bulletin, 10, 384388.Google Scholar
Rapoport, J.L., Giedd, J.N., & Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: Update 2012. Molecular Psychiatry, 17, 12281238.Google Scholar
Reichenberg, A., Caspi, A., Harrington, H., Houts, R., Keefe, R.S., Murray, R.M., & Moffitt, T.E. (2010). Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: A 30-year study. American Journal of Psychiatry, 167, 160169.CrossRefGoogle ScholarPubMed
Rosenthal, D. (1963). The Genain quadruplets. A case study and theoretical analysis of heredity and environment in schizophrenia. New York: Basic Books.CrossRefGoogle Scholar
Rosvold, H.E., Mirsky, A.F., Sarason, I., Bransome, E.D., & Beck, L.H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20, 343350.CrossRefGoogle Scholar
Rund, B.R., Barder, H.E., Evensen, J., Haahr, U., Hegelstad, W.T.V., Joa, I., & Friis, S. (2016). Neurocognition and duration of psychosis: A 10-year follow-up of first-episode patients. Schizophrenia Bulletin, 42, 8795.Google Scholar
Sass, L.A., & Parnas, J. (2003). Schizophrenia, consciousness, and the self. Schizophrenia Bulletin, 29, 427444.Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421442.Google Scholar
Schmidt, S.J., Schultze-Lutter, F., Schimmelmann, B.G., Maric, N.P., Salokangas, R.K., Riecher-Rossler, A., & Ruhrmann, S. (2015). EPA guidance on the early intervention in clinical high risk states of psychoses. European Psychiatry, 30, 388404.Google Scholar
Seidman, L.J. (1983). Schizophrenia and brain dysfunction: An integration of recent neurodiagnostic findings. Psychological Bulletin, 94, 195238.Google Scholar
Seidman, L.J. (1990). The neuropsychology of schizophrenia: A neurodevelopmental and case study approach. Journal of Neuropsychiatry and Clinical Neurosciences, 2, 301312.Google Scholar
Seidman, L., Cassens, G., Kremen, W., & Pepple, J. (1992). The neuropsychology of schizophrenia. In R.W. White (Ed.), Clinical syndromes in adult neuropsychology: The practitioner’s handbook (pp. 381450). Amsterdam: Elsevier.Google Scholar
Seidman, L.J., Buka, S.L., Goldstein, J.M., & Tsuang, M.T. (2006). Intellectual decline in schizophrenia: Evidence from a prospective birth cohort 28 year follow-up study. Journal of Clinical and Experimental Neuropsychology, 28, 225242.Google Scholar
Seidman, L.J., Meyer, E., Giuliano, A.J., Breiter, H., Goldstein, J.M., Kremen, W.S., & Faraone, S.V. (2012). Auditory working memory impairments in individuals at familial high risk for schizophrenia. Neuropsychology, 26, 288303.Google Scholar
Seidman, L.J., Cherkerzian, S., Goldstein, J.M., Agnew-Blais, J., Tsuang, M.T., & Buka, S.L. (2013). Neuropsychological performance and family history in children at age 7 who develop adult schizophrenia or bipolar psychosis in the New England Family Studies. Psychological Medicine, 43, 119131.Google Scholar
Seidman, L.J., Rosso, I.M., Thermenos, H.W., Makris, N., Juelich, R., Gabrieli, J.D.E., & Whitfield-Gabrieli, S. (2014). Medial temporal lobe default mode functioning and hippocampal structure as vulnerability indicators for schizophrenia: A MRI study of non-psychotic adolescent first-degree relatives. Schizophrenia Research, 159, 426434.Google Scholar
Seidman, L.J., & Nordentoft, M. (2015). New targets for prevention of schizophrenia: Is it time for interventions in the premorbid phase? Schizophrenia Bulletin, 41, 795800.Google Scholar
Seidman, L.J., Hellemann, G., Nuechterlein, K.H., Greenwood, T.A., Braff, D.L., Cadenhead, K.S., & Green, M.F. (2015). Factor structure and heritability of endophenotypes in schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS-1). Schizophrenia Research, 163, 7379.Google Scholar
Seidman, L.J., Pousada-Casal, A., Scala, S., Meyer, E.C., Stone, W.S., Thermenos, H.W., & Faraone, S.V. (2016). Auditory vigilance and working memory in youth at familial risk for schizophrenia or affective psychosis in the Harvard Adolescent Family High Risk Study. Journal of International Neuropsychological Society, 22, 10261037.Google Scholar
Seidman, L.J., Shapiro, D.I., Stone, W.S., Woodberry, K.A., Ronzio, A., Cornblatt, B.A., & Woods, S.W. (2016). Association of neurocognition with transition to psychosis: Baseline functioning in the second phase of the North American Prodrome Longitudinal Study. JAMA Psychiatry, 73, 12391248.Google Scholar
Sekar, A., Bialas, A.R., de Rivera, H., Davis, A., Hammond, T.R., Kamitaki, N., & McCarroll, S.A. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530(7589), 177183.Google Scholar
Shakow, D. (1946). The nature of deterioration in schizophrenic conditions. New York: Nervous and Mental Disease Monographs, Coolidge Foundation.Google Scholar
Shenton, M.E., Dickey, C.C., Frumin, M., & McCarley, R.W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49, 152.Google Scholar
Sullivan, H.S. (1927). The onset of schizophrenia. American Journal of Psychiatry, 6, 105134.Google Scholar
Sullivan, P.F., Daly, M.J., & O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nature Review of Genetics, 13, 537551.Google Scholar
Sutton, S., Braren, M., Zubin, J., & John, E.R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150, 11871188.Google Scholar
Thermenos, H.W., Keshavan, M.S., Juelich, R.J., Molokotos, E., Whitfield-Gabrieli, S., Brent, B.K., & Seidman, L.J. (2013). A review of neuroimaging studies of young relatives of persons with schizophrenia: A developmental perspective from schizotaxia to schizophrenia. American Journal of Medical Genetics B Neuropsychiatric Genetetics, 162, 604635.Google Scholar
Thomas, M.L., Green, M.F., Hellemann, G., Sugar, C.A., Tarasenko, M., Calkins, M.E., & Light, G.A. (2017). Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia. JAMA Psychiatry, 74, 3746.CrossRefGoogle ScholarPubMed
Tienari, P., Wynne, L.C., Sorri, A., Lahti, I., Läksy, K., Moring, J., & Wahlberg, K.E. (2004). Genotype-environment interaction in schizophrenia-spectrum disorder: Long-term follow-up study of Finnish adoptees. British Journal of Psychiatry, 184, 216222.Google Scholar
Toulopoulou, T., Goldberg, T.E., Mesa, I.R., Picchioni, M., Rijsdijk, F., Stahl, D., & Murray, R.M. (2010). Impaired intellect and memory: A missing link between genetic risk and schizophrenia? Archives of General Psychiatry, 67, 905913.Google Scholar
Tsuang, M.T., Faraone, S.V., & Lyons, M.J. (1993). Advances in psychiatric genetics. In J.A. Costa e Silva, C.C. Nadelson, N.C. Andreasen & M. Sato (Eds.), International review of psychiatry, volume I, (pp. 395440). Washington, DC: American Psychiatric Press.Google Scholar
Turetsky, B.I., Calkins, M.E., Light, G.A., Olincy, A., Radant, A.D., & Swerdlow, N.R. (2007). Neurophysiological endophenotypes of schizophrenia: The viability of selected candidate measures. Schizophrenia Bulletin, 33, 6994.Google Scholar
Uhlhaas, P.J., & Singer, W.J. (2013). High-frequency oscillations and the neurobiology of schizophrenia. Dialogues in Clinical Neuroscience, 15, 301313.Google Scholar
Weickert, T.W., Goldberg, T.E., Gold, J.M., Bigelow, L.B., Egan, M.F., & Weinberger, D.R. (2000). Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Archives of General Psychiatry, 57, 907913.Google Scholar
Weinberger, D.R., Berman, K.F., & Zec, R.F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43, 114124.Google Scholar
Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669.Google Scholar
Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., Tsuang, M.T., Faraone, S.V., McCarley, R.W., & Seidman, L.J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106, 12791284.CrossRefGoogle ScholarPubMed
Wohlberg, G.W., & Kornetsky, C. (1973). Sustained attention in remitted schizophrenics. Archives of General Psychiatry, 8, 533537.Google Scholar
Woodberry, K.A., Giuliano, A.J., & Seidman, L.J. (2008). Premorbid IQ in schizophrenia: A meta-analytic review. The American Journal of Psychiatry, 165, 579587.Google Scholar
Woodberry, K.A., Shapiro, D.I., Bryant, C., & Seidman, L.J. (2016). Progress and future directions in research on the psychosis prodrome: A review for clinicians. Harvard Review of Psychiatry, 24, 87103.Google Scholar
Wykes, T., Huddy, V., Cellard, C., McGurk, S.R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. American Journal of Psychiatry, 168, 472485.Google Scholar
Yung, A.R., & McGorry, P.D. (1996). The prodromal phase of first-episode psychosis: Past and current conceptualizations. Schizophrenia Bulletin, 22, 353370.Google Scholar
Zhang, R., Picchioni, M., Allen, A., & Toulopoulou, T. (2016). Working memory in unaffected relatives of patients with schizophrenia: A meta-analysis of functional magnetic resonance imaging studies. Schizophrenia Bulletin, 42, 10681077.Google Scholar
Zubin, J. (1975). Problem of attention in schizophrenia. In M. Kietzman, S. Sutton & J. Zubin (Eds.), Experimental approaches to psychopathology (pp. 139166). New York, NY: Academic Press.Google Scholar
Zubin, J., & Spring, B. (1977). Vulnerability: A new view on schizophrenia. Journal of Abnormal Psychology, 86, 103126.Google Scholar