Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:03:33.024Z Has data issue: false hasContentIssue false

Dual Task Abilities as a Possible Preclinical Marker of Alzheimer's Disease in Carriers of the E280A Presenilin-1 Mutation

Published online by Cambridge University Press:  02 December 2011

Sarah E. MacPherson*
Affiliation:
Department of Psychology, Human Cognitive Neuroscience and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom
Mario A. Parra
Affiliation:
Department of Psychology, Human Cognitive Neuroscience and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom Neuroscience Group, SIU (Sede de Investigaciones Universitaria), University of Antioquia, Medellin, Colombia
Sonia Moreno
Affiliation:
Neuroscience Group, SIU (Sede de Investigaciones Universitaria), University of Antioquia, Medellin, Colombia
Francisco Lopera
Affiliation:
Neuroscience Group, SIU (Sede de Investigaciones Universitaria), University of Antioquia, Medellin, Colombia
Sergio Della Sala
Affiliation:
Department of Psychology, Human Cognitive Neuroscience and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom
*
Correspondence and reprint requests to: Sarah E. MacPherson, Department of Psychology, Human Cognitive Neuroscience, University of Edinburgh, 7 George Square, Edinburgh, United Kingdom EH8 9JZ. E-mail: [email protected]

Abstract

Previous dual task studies have demonstrated that patients with sporadic Alzheimer's disease (AD) are impaired in their ability to perform two tasks simultaneously compared with healthy controls, despite being able to successfully perform the tasks alone relatively well. Yet, it remains unclear what the earliest clinical manifestation of this dual task coordination deficit is. This study examined dual task abilities in individuals who are at risk of early-onset familial AD due to an E280A presenilin-1 mutation. Thirty-nine carriers of the gene mutation who did not meet the criteria for AD and 29 non-carrier healthy controls were asked to perform digit recall accompanied by a secondary tracking task. Individuals who were carriers of the genetic mutation demonstrated significantly higher dual task costs than healthy non-carriers. Dual task performance was found to be more sensitive to this very early stage of FAD than episodic memory measures. The findings support the notion that a deficit in the coordination mechanism of the central executive may be a pre-clinical marker for the early detection of AD due to the E280A presenilin-1 gene mutation. (JINS, 2012, 18, 234–241)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta-Baena, N., Sepulveda-Falla, D., Lopera-Gómez, C.M., Jaramillo-Elorza, M.C., Moreno, S., Aguirre-Acevedo, D.C., Lopera, F. (2011). Pre-dementia clinical stages in presenilin 1 E280A familial early-onset Alzheimer's disease: A retrospective cohort study. Lancet Neurology, 10, 213220. doi:10.1016/S1474-4422(10)70323-9Google Scholar
Aguirre-Acevedo, D.C., Gómez, R.D., Moreno, S., Henao-Arboleda, E., Motta, M., Muñoz, C., Lopera, F. (2007). Validity and reliability of the CERAD-Col neuropsychological battery. Revista de Neurologia, 45, 655660. PMID: 18050096Google Scholar
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging and Alzheimer's Association workgroup. Alzheimer's & Dementia, 7, 270279. doi:10.1016/j.jalz.2011.03.008CrossRefGoogle Scholar
Alzheimer's Disease Collaborative Group. (1995). The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genetics, 11, 219222. doi:10.1038/ng1095-219CrossRefGoogle Scholar
Anderson, M., Bucks, R.S., Bayliss, D.M., Della Sala, S. (2011). Effect of age on dual-task performance in children and adults. Memory & Cognition, 39, 12411252. doi:10.3758/s13421-011-0099-7Google Scholar
Ardila, A., Lopera, F., Rosselli, M., Moreno, S., Madigral, L., Arango-Lasprilla, J.C., Kosik, K.S. (2000). Neuropsychological profile of a large kindred with familial Alzheimer's Disease caused by the E280A single presenilin-1 mutation. Archives of Clinical Neuropsychology, 15, 515528. doi:10.1093/arclin/15.6.515Google Scholar
Ardila, A., Rosselli, M., Puente, A. (1994). Neuropsychological evaluation of the Spanish speaker. New York: Plenum Press.CrossRefGoogle Scholar
Baddeley, A.D. (1986). Working memory. Oxford: Oxford University Press.Google Scholar
Baddeley, A.D., Bressi, S., Della Sala, S., Logie, R.H., Spinnler, H. (1991). The decline of working memory in Alzheimer's disease: A longitudinal study. Brain, 114, 25212542. doi:10.1093/brain/114.6.2521Google Scholar
Baddeley, A.D., Logie, R.H. (1999). Working memory: The multicomponent model. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 2861). New York: Cambridge University Press.Google Scholar
Baddeley, A.D., Logie, R., Bressi, S., Della Sala, S., Spinnler, H. (1986). Dementia and working memory. Quarterly Journal of Experimental Psychology, 38A, 603618. doi:10.1080/14640748608401616Google Scholar
Craik, F.I.M. (1994). Memory changes in normal aging. Current Directions in Psychological Sciences, 3, 155158. Stable URL: http://www.jstor.org/stable/20182295Google Scholar
Dannhauser, T.M., Walker, Z., Stevens, T., Lee, L., Seal, M., Shergill, S.S. (2005). The functional anatomy of divided attention in amnestic mild cognitive impairment. Brain, 128, 14181427. doi:10.1093/brain/awh413Google Scholar
Della Sala, S., Baddeley, A., Papagno, C., Spinnler, H. (1995). Dual-task paradigm: A means to examine the central executive. Annals of the New York Academy of Sciences, 769, 161171. doi:10.1111/j.1749-6632.1995.tb38137.xGoogle Scholar
Della Sala, S., Cocchini, G., Logie, R.H., Allerhand, M., MacPherson, S.E. (2010). Dual task during encoding, maintenance, and retrieval in Alzheimer's disease. Journal of Alzheimer's Disease, 19, 503515. doi:10.3233/JAD-2010-1244Google Scholar
Foley, J.A., Kaschel, R., Logie, R.H., Della Sala, S. (2011). Dual task performance in Alzheimer's disease, Mild Cognitive Impairment and normal ageing. Journal of Clinical and Experimental Neuropsychology, 26, 340348. doi:10.1093/arclin/acr032CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). “Mini-Mental State” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. doi:10.1016/0022-3956(75)90026-6Google Scholar
Grady, C.L., Haxby, J.V., Horwitz, B., Sundaram, M., Berg, G., Schapiro, M., Rapoport, S.I. (1988). Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. Journal of Clinical and Experimental Neuropsychology, 10, 576596. doi:10.1080/01688638808402796CrossRefGoogle ScholarPubMed
Greene, J.D., Baddeley, A.D., Hodges, J.R. (1996). Analysis of the episodic memory deficit in early Alzheimer's disease: Evidence from the doors and people test. Neuropsychologia, 34, 537551. doi:10.1016/0028-3932(95)00151-4CrossRefGoogle ScholarPubMed
Greene, J.D., Hodges, J.R., Baddeley, A.D. (1995). Autobiographical memory and executive function in early dementia of the Alzheimer's type. Neuropsychologia, 33, 16471670. doi:10.1016/0028-3932(95)00046-1Google Scholar
Holmes, C. (2002). Genotype and phenotype in Alzheimer's disease. The British Journal of Psychiatry, 180, 131134. doi:10.1192/bjp.180.2.131Google Scholar
Holtzer, R., Burright, R.G., Donovick, P.J. (2004). The sensitivity of dual-task performance to cognitive status in aging. Journal of the International Neuropsychological Society, 10, 230238. doi:10.10170S1355617704102099Google Scholar
Kaplan, E.F., Goodglass, H., Weintraub, S. (1983). The Boston naming test (2nd ed.). Philadelphia: Lea and Febiger.Google Scholar
Kaschel, R., Logie, R.H., Kazen, M., Della Sala, S. (2009). Alzheimer's disease, but not ageing or depression, affects dual-tasking. Journal of Neurology, 256, 18601868. doi:10.1007/s00415-009-5210-7CrossRefGoogle ScholarPubMed
Largen, J.W. Jr. (1984). Longitudinal changes in intellectual memory, and perceptual functions in dementia of the Alzheimer's type. International Journal of Neuroscience, 24, 313314. doi:10.3109/00207458409089824CrossRefGoogle Scholar
Lemere, C.A., Lopera, F., Kosik, K.S., Lendon, C.L., Ossa, J., Saido, T.C., Arango, J.C. (1996). The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nature Medicine, 2, 11461150. doi:10.1038/nm1096-1146Google Scholar
Lendon, C.L., Martinez, A., Behrens, I.M., Kosik, K.S., Madrigal, L., Norton, J., Lopera, F. (1997). E280A PS-1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Human Mutation, 10, 186195. doi:10.1002/(SICI)1098-1004(1997)10:3<186::AID-HUMU2>3.0.CO;2-HGoogle Scholar
Logie, R.H., Cocchini, G., Della Sala, S., Baddeley, A. (2004). Is there a specific executive capacity for dual task coordination? Evidence from Alzheimer's disease. Neuropsychology, 18, 504513. doi:10.1037/0894-4105.18.3.504Google Scholar
Logie, R.H., Della Sala, S., MacPherson, S.E., Cooper, J. (2007). Dual task demands on encoding and retrieval processes: Evidence from healthy adult ageing. Cortex, 43, 159169. doi:10.1016/S0010-9452(08)70453-2Google Scholar
Lopera, F., Ardila, A., Martinez, A., Madrigal, L., Arango-Viana, J.C., Lemere, C.A., Kosik, K.S. (1997). Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA: The Journal of the American Medical Association, 277, 793799. doi:10.1001/jama.1997.03540340027028Google Scholar
Lopez, O.L., Becker, J.T., Jagust, W.J., Fitzpatrick, A., Carlson, M.C., DeKosky, S.T., Kuller, L.H. (2006). Neuropsychological characteristics of mild cognitive impairment subgroups. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 159165. doi:10.1136/jnnp.2004.045567CrossRefGoogle ScholarPubMed
MacPherson, S.E., Della Sala, S., Logie, R.H., Wilcock, G.K. (2007). Specific AD impairment in concurrent performance of two memory tasks. Cortex, 43, 858865. doi:10.1016/S0010-9452(08)70685-3Google Scholar
Mosconi, L., Sorbi, S., Nacmias, B., De Cristofaro, M.T., Fayyaz, M., Cellini, E., Pupi, A. (2003). Brain metabolic differences between sporadic and familial Alzheimer's disease. Neurology, 61, 11381140. doi:urn:ISSN:0028-3878Google Scholar
Nelson, H.E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12, 313324. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1009768CrossRefGoogle ScholarPubMed
Nordlund, A., Rolstad, S., Hellstrom, P., Sjogren, M., Hansen, S., Wallin, A. (2005). The Gotenborg MCI study: Mild cognitive impairment is a heterogeneous condition. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 14851490. doi:10.1136/jnnp.2004.050385Google Scholar
Osterrieth, P.A. (1944). Le test de copie d'une figure complex: Contribution a l'etude de la perception et de la memoire. Archives de Psychologie, 30, 206356. doi:apa.org/?uid=1946-02126-001Google Scholar
Park, D.C., Lautenschlager, G., Hedden, T., Davidson, N.S., Smith, A.D., Smith, P.K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology & Aging, 17, 299320. doi:apa.org/journals/pag/17/2/299CrossRefGoogle ScholarPubMed
Park, D.C., Smith, A.D., Lautenschlager, G., Earles, J.L., Frieske, D., Zwahr, M., Gaines, C.L. (1996). Mediators of long-term memory performance across the life span. Psychology & Aging, 11, 621637. doi:10.1037/0882-7974.11.4.621Google Scholar
Pettersson, A.F., Olsson, E., Wahlund, L.O. (2005). Effect of divided attention on gait in subjects with and without cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 20, 5862. doi:10.1177/0891988706293528Google Scholar
Raven, J.C. (1982). Revised manual for Raven's progressive matrices and vocabulary scale. Windsor, UK: NFER Nelson.Google Scholar
Reitan, R.M., Wolfson, D. (1993). The Halstead–Reitan neuropsychological test battery: Theory and clinical interpretation (2nd ed.). Tucson, AZ: Neuropsychology Press.Google Scholar
Rey, A. (1941). L'examen psychologique dans les cas d'encephalopathie traumatique. Archives de Psychologie, 28, 340. Retrieved from http://psycnet.apa.org/psycinfo/1943-03814-001Google Scholar
Ringman, J.M., Medina, L.D., Rodriguez-Agudelo, Y., Chavez, M., Lu, P., Cummings, J.L. (2009). Current concepts of mild cognitive impairment and their applicability to persons at-risk for familial Alzheimer's disease. Current Alzheimer Research, 6, 341346. doi:10.2174/156720509788929336CrossRefGoogle ScholarPubMed
Ritchie, K., Artero, S., Touchon, J. (2001). Classification criteria for mild cognitive impairment: A population-based validation study. Neurology, 56, 3742. Retrieved from http://www.neurology.org/content/56/1/37.full.htmlCrossRefGoogle ScholarPubMed
Robert, P.H., Berr, C., Volteau, M., Bertogliati, C., Benoit, M., Sarazin, M., Legrain, S., Dubois, B. (2006). Apathy in patients with mild cognitive impairment and the risk of developing dementia of Alzheimer's disease: A one year follow-up study. Clinical Neurology and Neurosurgery, 108, 733736. doi:10.1016/j.clineuro.2006.02.003CrossRefGoogle ScholarPubMed
Sebastian, M.V., Menor, J., Elosua, M.R. (2006). Attentional dysfunction of the central executive in AD: Evidence from dual task and perseveration errors. Cortex, 42, 10151020. doi:10.1016/S0010-9452(08)70207-7Google Scholar
Spinnler, H., Della Sala, S. (1988). The role of clinical neuropsychology in the neurological diagnosis of Alzheimer's disease. Journal of Neurology, 235, 258271. doi:10.1007/BF00314172CrossRefGoogle ScholarPubMed
Sumerall, S.W., Timmons, P.L., James, A.L., Ewing, M.J., Oehlert, M.E. (1997). Expanded norms for the Controlled Oral Word Association Test. Journal of Clinical Psychology, 53, 517521. doi:10.1002/(SICI)1097-4679(199708)53:5<517::AID-JCLP14>3.0.CO;2-HGoogle Scholar
Wechsler, D. (1945). A standardized memory test for clinical use. Journal of Psychology, 19, 8795. doi:10.1080/00223980.1945.9917223Google Scholar
Wechsler, D. (1981). Wechsler adult intelligence scale-revised. San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D. (1997). WAIS-III administration and scoring manual. San Antonio, TX: Psychological Corporation.Google Scholar
Welsh, K., Butters, N., Hughes, J., Mohs, R., Heyman, A. (1991). Detection of abnormal memory decline in mild cases of Alzheimer's disease using CERAD neuropsychological measures. Archives of Neurology, 48, 278281. Retrieved from http://archneur.ama-assn.org/cgi/reprint/48/3/278Google Scholar
Wicklund, A.H., Rademaker, A., Johnson, N., Weitner, B.B., Weintraub, S. (2007). Rate of cognitive change measured by neuropsychologic test performance in 3 distinct dementia syndromes. Alzheimer Disease & Associated Disorders, 21, S70S78. doi:10.1097/WAD.0b013e31815bf8a5CrossRefGoogle ScholarPubMed
Yesavage, J.A. (1988). Geriatric depression scale. Psychopharmacology Bulletin, 24, 709711. PMid:3249773Google ScholarPubMed