Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:15:02.344Z Has data issue: false hasContentIssue false

Altered Gesture Imitation and Brain Anatomy in Adult Prader–Willi Syndrome Patients

Published online by Cambridge University Press:  04 March 2021

Assumpta Caixàs*
Affiliation:
Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT-Universitat Autònoma de Barcelona, Sabadell, Spain
Laura Blanco-Hinojo
Affiliation:
MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain Department of Psychiatry, Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
Jesús Pujol
Affiliation:
MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain Department of Psychiatry, Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
Joan Deus
Affiliation:
Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
Olga Giménez-Palop
Affiliation:
Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT-Universitat Autònoma de Barcelona, Sabadell, Spain
David Torrents-Rodas
Affiliation:
Department of Experimental and Biological Psychology, Philipps-Universität Marburg, Marburg, Germany
Ramon Coronas
Affiliation:
Mental Health Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT-Universitat Autònoma de Barcelona, Sabadell, Spain (CIBERSAM)
Ramon Novell
Affiliation:
Specialized Service in Mental Health and Intellectual Disability Department, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain Neurodevelopment Department group [Girona Biomedical Research Institute] – IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
Susanna Esteba-Castillo
Affiliation:
Specialized Service in Mental Health and Intellectual Disability Department, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain Neurodevelopment Department group [Girona Biomedical Research Institute] – IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
*
*Correspondence and reprint requests to: Assumpta Caixàs, Endocrinology and Nutrition Department, Hospital Universitari Parc Taulí, C/Parc Taulí nº1 08208Sabadell, Spain. E-mail: [email protected]

Abstract

Objective:

To explore motor praxis in adults with Prader–Willi syndrome (PWS) in comparison with a control group of people with intellectual disability (ID) and to examine the relationship with brain structural measurements.

Method:

Thirty adult participants with PWS and 132 with ID of nongenetic etiology (matched by age, sex, and ID level) were assessed using a comprehensive evaluation of the praxis function, which included pantomime of tool use, imitation of meaningful and meaningless gestures, motor sequencing, and constructional praxis.

Results:

Results support specific praxis difficulties in PWS, with worse performance in the imitation of motor actions and better performance in constructional praxis than ID peers. Compared with both control groups, PWS showed increased gray matter volume in sensorimotor and subcortical regions. However, we found no obvious association between these alterations and praxis performance. Instead, praxis scores correlated with regional volume measures in distributed apparently normal brain areas.

Conclusions:

Our findings are consistent in showing significant impairment in gesture imitation abilities in PWS and, otherwise, further indicate that the visuospatial praxis domain is relatively preserved. Praxis disability in PWS was not associated with a specific, focal alteration of brain anatomy. Altered imitation gestures could, therefore, be a consequence of widespread brain dysfunction. However, the specific contribution of key brain structures (e.g., areas containing mirror neurons) should be more finely tested in future research.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Assumpta Caixàs and Laura Blanco-Hinojo contributed equally to the work as co-first authors.

References

REFERENCES

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Aron, A.R., Robbins, T.W., & Poldrack, R.A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 775785.10.1016/j.tics.2013.12.003CrossRefGoogle Scholar
Ball, S.L., Holland, A.J., Huppert, F., Treppner, P., & Dodd, K. (2006). The Cambridge Examination for Mental Disorders of Older People with Down’s Syndrome and Others with Intellectual Disabilities (CAMDEX-DS). Cambridge, UK: Cambridge University Press.Google Scholar
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple hypothesis testing. Journal of the Royal Statistical Society: Series B, 57, 289300.Google Scholar
Bertella, L., Girelli, L., Grugni, G., Marchi, S., Molinari, E., & Semenza, C. (2005). Mathematical skills in Prader-Willi syndrome. Journal of Intellectual Disability Research, 49, 159169.10.1111/j.1365-2788.2004.00634.xCrossRefGoogle ScholarPubMed
Brown, S. & Yuan, Y. (2018). Broca’s area is jointly activated during speech and gesture production. Neuroreport, 29, 12141216.10.1097/WNR.0000000000001099CrossRefGoogle ScholarPubMed
Buxbaum, L.J., Shapiro, A.D., & Coslett, H.B. (2014). Critical brain regions for tool-related and imitative actions: A componential analysis. Brain, 137, 19711985.10.1093/brain/awu111CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A.R., & Eickhoff, S.B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50,11481167.10.1016/j.neuroimage.2009.12.112CrossRefGoogle ScholarPubMed
Cassidy, S.B., Schwartz, S., Miller, J.L., & Driscoll, D.J. (2012). Prader-Willi syndrome. Genetics in Medicine, 14, 1026.10.1038/gim.0b013e31822bead0CrossRefGoogle ScholarPubMed
Cattaneo, L. & Rizzolatti, G. (2009). The mirror neuron system. Archives of Neurology, 66, 557560.10.1001/archneurol.2009.41CrossRefGoogle ScholarPubMed
Chen, J., Papies, E.K., & Barsalou, L.W. (2016). A core eating network and its modulations underlie diverse eating phenomena. Brain and Cognition, 110, 2042.10.1016/j.bandc.2016.04.004CrossRefGoogle ScholarPubMed
Chevalère, J., Postal, V., Jauregui, J., Copet, P., Laurier, V., & Thuilleaux, D. (2015). Executive functions and Prader-Willi syndrome: Global deficit linked with intellectual level and syndrome-specific associations. American Journal on Intellectual and Developmental Disabilities, 120, 215229.10.1352/1944-7558-120.3.215CrossRefGoogle ScholarPubMed
Cimolin, V., Galli, M., Grugni, G., Vismara, L., Precilios, H., Albertini, G., … Capodaglio, P. (2011). Postural strategies in Prader-Willi and Down syndrome patients. Research in Developmental Disabilities, 32, 669673.10.1016/j.ridd.2010.11.017CrossRefGoogle ScholarPubMed
Civardi, C., Vicentini, R., Grugni, G., & Cantello, R. (2004). Corticospinal physiology in patients with Prader-Willi syndrome: A transcranial magnetic stimulation study. Archives of Neurology, 61, 15851589.CrossRefGoogle ScholarPubMed
Copet, P., Jauregui, J., Laurier, V., Ehlinger, V., Arnaud, C., Cobo, A.M., … Thuilleaux, D. (2010). Cognitive profile in a large french cohort of adults with Prader-Willi syndrome: Differences between genotypes. Journal of Intellectual Disabilities Research, 54, 204215.10.1111/j.1365-2788.2010.01251.xCrossRefGoogle Scholar
Cross, K. A., Torrisi, S., Reynolds Losin, E.A., & Iacoboni, M. (2013). Controlling automatic imitative tendencies: Interactions between mirror neuron and cognitive control systems. Neuroimage, 83, 493504.CrossRefGoogle ScholarPubMed
Curfs, L.M., Wiegers, A.M., Sommers, J.R., Borghgraef, M., & Fryns, J.P. (1991). Strengths and weaknesses in the cognitive profile of youngsters with Prader-Willi syndrome. Clinical Genetics, 40, 430434.10.1111/j.1399-0004.1991.tb03114.xCrossRefGoogle ScholarPubMed
Dagher, A. (2012). Functional brain imaging of appetite. Trends in Endocrinology & Metabolism, 23, 250260.CrossRefGoogle ScholarPubMed
Defloor, T., Van Borsel, J., & Curfs, L. (2002). Articulation in Prader-Willi syndrome. Journal of Communication Disorders, 35, 261282.10.1016/S0021-9924(02)00057-6CrossRefGoogle ScholarPubMed
Dewey, D. (1993). Error analysis of limb and orofacial praxis in children with developmental motor deficits. Brain and Cognition, 23, 203221.10.1006/brcg.1993.1055CrossRefGoogle ScholarPubMed
Dewey, D. (1995). What is developmental dyspraxia? Brain and Cognition, 29, 254274.10.1006/brcg.1995.1281CrossRefGoogle ScholarPubMed
Dick, A.S., Garic, D., Graziano, P., & Tremblay, P. (2019). The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex, 111, 148163.10.1016/j.cortex.2018.10.015CrossRefGoogle ScholarPubMed
Dronkers, N.F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159161.CrossRefGoogle ScholarPubMed
Dykens, E.M. (2002). Are jigsaw puzzle skills ‘spared’ in persons with Prader-Willi syndrome? Journal of Child Psychology and Psychiatry, 43, 343352.10.1111/1469-7610.00025CrossRefGoogle ScholarPubMed
Dykens, E.M., Hodapp, R.M., Walsh, K., & Nash, L.J. (1992). Profiles, correlates, and trajectories of intelligence in Prader-Willi syndrome. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 11251130.10.1097/00004583-199211000-00022CrossRefGoogle ScholarPubMed
Dykens, E.M., Roof, E., Hunt-Hawkins, H., Daniell, C., & Jurgensmeyer, S. (2019). Profiles and trajectories of impaired social cognition in people with Prader-Willi syndrome. PLoS One, 14, e0223162.10.1371/journal.pone.0223162CrossRefGoogle ScholarPubMed
Elliot, D., Weeks, D.J., & Gray, S. (1990). Manual and oral praxis in adults with Down’s syndrome. Neuropsychologia, 28, 13071315.10.1016/0028-3932(90)90046-QCrossRefGoogle Scholar
Esteba-Castillo, S., Peña-Casanova, J., Garcia-Alba, J., Castellanos, M.A., Torrents-Rodas, D., Rodriguez, E., … Novell-Alsina, R. (2017). Barcelona Test for Intellectual Disability: A new instrument for the neuropsychological assessment of adults with intellectual disability. Revista de Neurologia, 64, 433444.Google ScholarPubMed
Foti, F., Menghini, D., Orlandi, E., Rufini, C., Crinò, A., Spera, S., … Mandolesi, L. (2015). Learning by observation and learning by doing in Prader-Willi syndrome. Journal of Neurodevelopmental Disorders, 7, 6.CrossRefGoogle ScholarPubMed
Foundas, A.L. & Duncan, E.S. (2019). Limb apraxia: A disorder of learned skilled movement. Current Neurology and Neuroscience Reports, 19, 82.10.1007/s11910-019-0989-9CrossRefGoogle ScholarPubMed
Geffen, G., Moar, K.J., O’Hanlon, A.P., Clark, C.R., & Geffen, L.B. (1990). Performance measures of 16- to 86-year old males and females on the auditory verbal leaning test. Clinical Neuropsychologist, 4, 4563.10.1080/13854049008401496CrossRefGoogle Scholar
Goldenberg, G. (2014). Apraxia - the cognitive side of motor control. Cortex, 57, 270274.10.1016/j.cortex.2013.07.016CrossRefGoogle ScholarPubMed
Goldenberg, G., Hermsdörfer, J., Glindemann, R., Rorden, C., & Karnath, H.O. (2007). Pantomime of tool use depends on integrity of left inferior frontal cortex. Cerebral Cortex, 17, 27692776.10.1093/cercor/bhm004CrossRefGoogle ScholarPubMed
Guinovart, M., Coronas, R., & Caixàs, A. (2019). Psychopathological disorders in Prader-Willi syndrome. Endocrinología, Diabetes y Nutrición, 66, 579587.10.1016/j.endinu.2019.03.004CrossRefGoogle ScholarPubMed
Holm, V.A., Cassidy, S.B., Butler, M.G., Hanchett, J.M., Greenswag, L.R., Whitman, B.Y., & Greenberg, F. (1993). Prader-Willi syndrome: Consensus diagnostic criteria. Pediatrics, 91, 398402.Google ScholarPubMed
Honea, R.A., Holsen, L.M., Lepping, R.J., Perea, R., Butler, M.G., Brooks, W.M., & Savage, C.R. (2012). The neuroanatomy of genetic subtype differences in Prader-Willi syndrome. American Journal of Medical Genetics B Neuropsychiatric Genetics, 159, 243253.10.1002/ajmg.b.32022CrossRefGoogle Scholar
Hurren, B.J. & Flack, N.A. (2016). Prader-Willi syndrome: A spectrum of anatomical and clinical features. Clinical Anatomy, 29, 590605.10.1002/ca.22686CrossRefGoogle ScholarPubMed
Iacoboni, M. & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Review Neuroscience, 7, 942951.10.1038/nrn2024CrossRefGoogle ScholarPubMed
Iacoboni, M. & Mazziota, J.C. (2007). Mirror neuron system: Basic findings and clinical applications. Annals of Neurology, 62, 213218.10.1002/ana.21198CrossRefGoogle ScholarPubMed
Jauregui, J., Arias, C., Vegas, O., Alén, F., Martínez, S., Copet, P., & Thuilleaux, D. (2007). A neuropsychological assessment of frontal cognitive functions in Prader-Willi syndrome. Journal of Intellectual Disability Research, 51, 350365.10.1111/j.1365-2788.2006.00883.xCrossRefGoogle Scholar
Kaufman, A.S. & Kaufman, N.L. (2004). Kaufman Brief Intelligence Test (2nd ed.). Circle Pines, MN: American Guidance Services.Google Scholar
Kilner, J.M., Neal, A., Wieskopf, N., Friston, K.J., & Frith, C.D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29, 1015310159.CrossRefGoogle ScholarPubMed
Koenig, K., Klin, A., & Schultz, R. (2004). Deficits in social attribution ability in Prader-Willi syndrome. Journal of Autism and Developmental Disorders, 34, 573582.CrossRefGoogle ScholarPubMed
Lam, M.Y., Rubin, D.A., Duran, A.T., Chavoya, F.A., White, E., & Rose, D.J. (2016). A characterization of movement skills in obese children with and without Prader-Willi syndrome. Research Quarterly for Exercise and Sport, 87, 245253.10.1080/02701367.2016.1182113CrossRefGoogle ScholarPubMed
Leiguarda, R. (2001). Limb apraxia: Cortical or subcortical. Neuroimage, 14, 137141.10.1006/nimg.2001.0833CrossRefGoogle ScholarPubMed
Leiguarda, R.C. & Marsden, C.D. (2000). Limb apraxias: Higher-order disorders of sensorimotor integration. Brain, 123, 860879.10.1093/brain/123.5.860CrossRefGoogle ScholarPubMed
Lesourd, M., Osiurak, F., Baumard, J., Bartolo, A., Vanbellingen, T., & Reynaud, E. (2018). Cerebral correlates of imitation of intransitive gestures: An integrative review of neuroimaging data and brain lesion studies. Neuroscience & Biobehavioral Reviews, 95, 4460.10.1016/j.neubiorev.2018.07.019CrossRefGoogle ScholarPubMed
Liakakis, G., Nickel, J., & Seitz, R.J. (2011). Diversity of the inferior frontal gyrus – a meta-analysis of neuroimaging studies. Behavioural Brain Research, 225, 341347.10.1016/j.bbr.2011.06.022CrossRefGoogle ScholarPubMed
Lukoshe, A., White, T., Schmidt, M.N., van der Lugt, A., & Hokken-Koelega, A.C. (2013). Divergent structural brain abnormalities between different genetic subtypes of children with Prader-Willi syndrome. Journal of Neurodevelopmental Disorders, 5, 31.10.1186/1866-1955-5-31CrossRefGoogle ScholarPubMed
Luria, A. R. (1966). Higher Cortical Functions in Man. New York, NY: Basic Books.Google Scholar
Maliia, M.D., Donos, C., Barborica, A., Popa, I., Ciurea, J., Cinatti, S., & Mindruta, I. (2018). Functional mapping and effective connectivity of the human operculum. Cortex, 109, 303321.10.1016/j.cortex.2018.08.024CrossRefGoogle ScholarPubMed
Manning, K.E., Tait, R., Suckling, J. &, Holland, A.J. (2017). Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults. Neuroimage: Clinical, 17, 899909.CrossRefGoogle ScholarPubMed
Moix, E., Giménez-Palop, O., & Caixàs, A. (2018). Treatment with growth hormone in the Prader-Willi syndrome. Endocrinología, Diabetes y Nutrición, 65, 229236.10.1016/j.endien.2018.01.004CrossRefGoogle Scholar
Molnar-Szakacs, I., Iacoboni, M., Koski, L., & Mazziotta, J.C. (2005). Functional segregation within pars opercularis of the inferior frontal gyrus: Evidence from fMRI studies of imitation and action observation. Cerebral Cortex, 15, 986994.10.1093/cercor/bhh199CrossRefGoogle ScholarPubMed
Niessen, E., Fink, G.R., & Weiss, P.H. (2014). Apraxia, pantomime and the parietal cortex. Neuroimage: Clinical, 5, 4252.10.1016/j.nicl.2014.05.017CrossRefGoogle ScholarPubMed
Nihira, K., Leland, H., & Lambert, N. (1993). AAMR Adaptive Behavior Scale-Residential and Community: Examination Booklet (2nd ed.). Austin, TX: Pro-Ed.Google Scholar
Novell-Alsina, R., Esteba-Castillo, S., Caixàs, A., Gabau, E., Giménez-Palop, O., Pujol, J., … Torrents-Rodas, D., 2019. Compulsions in Prader-Willi syndrome: Occurrence and severity as a function of genetic subtype. Actas Españolas de Psiquiatría, 47, 7987.Google ScholarPubMed
Ogura, K., Fujii, T., Abe, N., Hosokai, Y., Shinohara, M., Fukuda, H., & Mori, E. (2013). Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome. Brain & Development, 35, 427434.10.1016/j.braindev.2012.07.013CrossRefGoogle ScholarPubMed
Ogura, K., Fujii, T., Abe, N., Hosokai, Y., Shinohara, M., Takahashi, S., & Mori, E. (2011). Small gray matter volume in orbitofrontal cortex in Prader-Willi syndrome: A voxel-based MRI study. Human Brain Mapping, 32, 10591066.10.1002/hbm.21089CrossRefGoogle ScholarPubMed
Ozsancak, C., Auzou, P., Dujardin, K., Quinn, N., & Destée, A. (2004). Orofacial apraxia in corticobasal degeneration, progressive supranuclear palsy, multiple system atrophy and Parkinson’s disease. Journal of Neurology, 251, 13171323.CrossRefGoogle ScholarPubMed
Peña-Casanova, J. (2005). Integrated Program of Neuropsychological Examination. Revised-Barcelona Test. Manual. Barcelona, Spain: Masson.Google Scholar
Perkins, T., Stokes, M., McGillivray, J., & Bittar, R. (2010). Mirror neuron dysfunction in autism spectrum disorders. Journal of Clinical Neuroscience, 17, 12391243.10.1016/j.jocn.2010.01.026CrossRefGoogle ScholarPubMed
Pujol, J., Blanco-Hinojo, L., Esteba-Castillo, S., Caixàs, A., Harrison, B.J., Bueno, M., … Novell-Alsina, R. (2016). Anomalous basal ganglia connectivity and obsessive-compulsive behaviour in patients with Prader Willi syndrome. Journal of Psychiatry & Neuroscience, 41, 261271.10.1503/jpn.140338CrossRefGoogle ScholarPubMed
Pujol, J., Fenoll, R., Ribas-Vidal, N., Martínez-Vilavella, G., Blanco-Hinojo, L., García-Alba, J., … Esteba-Castillo, S. (2018). A longitudinal study of brain anatomy changes preceding dementia in Down syndrome. Neuroimage: Clinical, 18, 160166.10.1016/j.nicl.2018.01.024CrossRefGoogle ScholarPubMed
Reus, L., Zwarts, M., van Vlimmeren, L.A., Willemsen, M.A., Otten, B.J., & Nijhuis-van der Sanden, M.W. (2010). Motor problems in Prader-Willi syndrome: A systematic review on body composition and neuromuscular functioning. Neuroscience & Biobehavioral Reviews, 35, 956969.10.1016/j.neubiorev.2010.10.015CrossRefGoogle ScholarPubMed
Rousseaux, M., Rénier, J., Anicet, L., Pasquier, F., & Mackowiak-Cordoliani, M.A. (2012). Gesture comprehension, knowledge and production in Alzheimer’s disease. European Journal of Neurology, 19, 10371044.CrossRefGoogle ScholarPubMed
Saeves, R., Asten, P., Sorthaug, K., & Bágesund, M. (2011). Orofacial dysfunction in individuals with Prader-Willi syndrome assessed with NOT-S. Acta Odontologica Scandinavica, 69, 310315.10.3109/00016357.2011.568961CrossRefGoogle ScholarPubMed
Sanin, G.N. & Benke, T. (2017). Bimanual gesture imitation in Alzheimer’s disease. Journal of Alzheimer’s Disease, 57, 5359.10.3233/JAD-160680CrossRefGoogle ScholarPubMed
Serra-Mayoral, A. & Peña-Casanova, J. (2006). Test-retest and interrater reliability of Barcelona Test. Neurologia, 21, 277281.Google ScholarPubMed
Sörös, P., Inamoto, Y., & Martin, R.E. (2009). Functional brain imaging of swallowing: An activation likelihood estimation meta-analysis. Human Brain Mapping, 30, 24262439.10.1002/hbm.20680CrossRefGoogle ScholarPubMed
Steinman, K.J., Mostofsky, S.H., & Denckla, M.B. (2010). Toward a narrower, more pragmatic view of developmental dyspraxia. Journal of Child Neurology, 25, 7181.10.1177/0883073809342591CrossRefGoogle Scholar
Vanvuchelen, M., Van Schuerbeeck, L., Roeyers, H.,& De Weerdt, W. (2013). Understanding the mechanisms behind deficits in imitation: Do individuals with autism know ‘what’ to imitate and do they know ‘how’ to imitate? Research in Developmental Disabilities, 34, 538545.10.1016/j.ridd.2012.09.016CrossRefGoogle Scholar
Whittington, J. & Holland, T. (2011). Recognition of emotion in facial expression by people with Prader-Willi syndrome. Journal of Intellectual Disability Research, 55, 7584.10.1111/j.1365-2788.2010.01348.xCrossRefGoogle ScholarPubMed
Williams, J.H., Whiten, A., & Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders, 34, 285299.CrossRefGoogle ScholarPubMed
Wilson, B.A., Alderman, N., Burgess, P.W., Emslie, H., Evans, J.J. (1996). Behavioural Assessment of the Dysexecutive Syndrome. Bury St Edmunds, UK: Harcourt Assessment.Google Scholar
Woodcock, K.A., Oliver, C., & Humphreys, G.W. (2009). Task-switching deficits and repetitive behavior in genetic neurodevelopment disorders: Data from children with Prader-Willi syndrome chromosome 15 q11-q13 deletion and boys with Fragile X syndrome. Cognitive Neuropsychology, 26, 172194.CrossRefGoogle Scholar
Yang, J., & Hofmann, J. (2015). Action observation and imitation in autism spectrum disorders: An ALE meta-analysis of fMRI studies. Brain Imaging and Behavior, 10, 960969.CrossRefGoogle Scholar
Zhang, Y., Zhao, H., Qiu, S., Tian, J., Wen, X., Miller, J.L., … Liu, Y. (2013). Altered functional brain networks in Prader-Willi syndrome. NMR in Biomedicine, 26, 622629.CrossRefGoogle ScholarPubMed
Zoia, S., Pelamatti, G., & Rumiati, R.I. (2004). Praxic skills in down and mentally retarded adults: Evidence for multiple action routes. Brain and Cognition, 54, 717.10.1016/S0278-2626(03)00055-1CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Caixàs et al. supplementary material

Caixàs et al. supplementary material

Download Caixàs et al. supplementary material(PDF)
PDF 281 KB