Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T11:31:07.418Z Has data issue: false hasContentIssue false

Superhydrophilic and underwater superoleophobic nanofibrous membrane for separation of oil/water emulsions

Published online by Cambridge University Press:  15 June 2020

Jingjing Wang*
Affiliation:
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng224051, P.R. China
Luming Wang
Affiliation:
Engineering Center for Straw Ecological Building Materials of Jiangsu Province, Yancheng Institute of Technology, Yancheng224051, P.R. China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Membranes with special wettability have attracted increasing interest for oil/water separation. Herein, the cellulose-based nanofibrous membrane was fabricated in an aqueous system by an electrospinning technique. The membrane was then modified successively through coating polydopamine and polyethyleneimine on the surface, which endowed the membrane with superhydrophilic and underwater superoleophobic character. The composition and morphology of the resultant membrane were characterized by attenuated total reflectance Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and field-emission scanning electron microscope, respectively. Surfactant-stabilized oil-in-water emulsions were used to evaluate the separation performance of the membrane at different pH values. It was found that the membrane displayed the excellent antifouling property and separation performance for all different emulsions, with separation efficiency above 99.1% due to the development of a hydration layer underwater on the membrane surface. The reusability study indicated that the modification coating was stable enough to effectively separate emulsions after recycling at least 20 times. The developed nanofibrous membrane, as well as the corresponding modification strategy, enriched the application of membranes with special wettability in the field of oil spills and oily wastewater treatments.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, J.H., Zhang, W.P., Wan, Z., Li, S.F., Huang, T.C., and Fei, Y.J.: Oil spills from global tankers: Status review and future governance. J. Clean. Prod. 227, 20 (2019).10.1016/j.jclepro.2019.04.020CrossRefGoogle Scholar
Jiang, G., Hu, R., Xi, X., Wang, X., and Wang, R.: Facile preparation of superhydrophobic and superoleophilic sponge for fast removal of oils from water surface. J. Mater. Res. 28, 651 (2013).10.1557/jmr.2012.410CrossRefGoogle Scholar
Bai, X.G., Zhao, Z.H., Yang, H.D., and Li, J.: ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures. Sep. Purif. Technol. 221, 294 (2019).10.1016/j.seppur.2019.04.003CrossRefGoogle Scholar
Gupta, R.K., Dunderdale, G.J., England, M.W., and Hozumi, A.: Oil/water separation techniques: A review of recent progresses and future directions. J. Mater. Chem. A 5, 16025 (2017).10.1039/C7TA02070HCrossRefGoogle Scholar
Saththasivam, J., Loganathan, K., and Sarp, S.: An overview of oil-water separation using gas flotation systems. Chemosphere 144, 671 (2016).10.1016/j.chemosphere.2015.08.087CrossRefGoogle ScholarPubMed
Putatunda, S., Bhattacharya, S., Sen, D., and Bhattacharjee, C.: A review on the application of different treatment processes for emulsified oily wastewater. Int. J. Environ. Sci. Technol. 16, 2525 (2019).10.1007/s13762-018-2055-6CrossRefGoogle Scholar
Saraswathi, M.S.S.A., Nagendran, A., and Rana, D.: Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review. J. Mater. Chem. A 7, 8723 (2019).10.1039/C8TA11460ACrossRefGoogle Scholar
Bhalani, D.V. and Jewrajka, S.K.: Fouling resistant amphiphilic poly(dimethylsiloxane)-linked-poly(ethylene glycol) network on ultrafiltration poly(vinylidene fluoride) membrane and effect of spatial chain arrangement on separation of oil-water emulsions. J. Membr. Sci. 583, 278 (2019).10.1016/j.memsci.2019.04.067CrossRefGoogle Scholar
Ding, Y.J., Wu, J.D., Wang, J.Q., Lin, H.B., Wang, J.P., Liu, G., Pei, X.Q., Liu, F., and Tang, C.Y.: Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial Span 80 welding for excellent oil/water separation. Appl. Surf. Sci. 485, 179 (2019).10.1016/j.apsusc.2019.04.214CrossRefGoogle Scholar
Yue, X.J., Li, Z.D., Zhang, T., Yang, D.Y., and Qiu, F.X.: Design and fabrication of superwetting fiber-based membranes for oil/water separation applications. Chem. Eng. J. 364, 292 (2019).10.1016/j.cej.2019.01.149CrossRefGoogle Scholar
Yuan, J., Liao, F.F., Guo, Y.N., and Liang, L.Y.: Preparation and performance of superhydrophilic and superoleophobic membrane for oil/water separation. Prog. Chem. 31, 144 (2019).Google Scholar
Wei, Y.B., Qi, H., Gong, X., and Zhao, S.F.: Specially wettable membranes for oil-water separation. Adv. Mater. Interfaces 5, 1800576 (2018).10.1002/admi.201800576CrossRefGoogle Scholar
Liu, X., Ge, L., Li, W., Wang, X., and Li, F.: Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption. ACS Appl. Mater. Interfaces 7, 791 (2015).10.1021/am507238yCrossRefGoogle ScholarPubMed
Huang, M., Si, Y., Tang, X., Zhu, Z., Ding, B., Liu, L., Zheng, G., Luo, W., and Yu, J.: Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A 1, 14071 (2013).10.1039/c3ta13385kCrossRefGoogle Scholar
Xue, Z., Wang, S., Lin, L., Chen, L., Liu, M., Feng, L., and Jiang, L.: A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 23, 4270 (2011).10.1002/adma.201102616CrossRefGoogle ScholarPubMed
Xiang, Y., Liu, F., and Xue, L.: Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation. J. Membr. Sci. 476, 321 (2015).10.1016/j.memsci.2014.11.052CrossRefGoogle Scholar
Lv, Y., Yang, S.J., Du, Y., Yang, H.C., and Xu, Z.K.: Co-deposition kinetics of polydopamine/polyethyleneimine coatings: Effects of solution composition and substrate surface. Langmuir 34, 13123 (2018).10.1021/acs.langmuir.8b02454CrossRefGoogle ScholarPubMed
Sarbatly, R., Krishnaiah, D., and Kamin, Z.: A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills. Mar. Pollut. Bull. 106, 8 (2016).10.1016/j.marpolbul.2016.03.037CrossRefGoogle ScholarPubMed
Kim, C.W., Kim, D.S., Kang, S.Y., Marquez, M., and Joo, Y.L.: Structural studies of electrospun cellulose nanofibers. Polymer 47, 5097 (2006).10.1016/j.polymer.2006.05.033Google Scholar
Viswanathan, G., Murugesan, S., Pushparaj, V., Nalamasu, O., Ajayan, P.M., and Linhardt, R.J.: Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7, 415 (2006).10.1021/bm050837sCrossRefGoogle ScholarPubMed
Zhao, C., Zuo, F., Liao, Z., Qin, Z., Du, S., and Zhao, Z.: Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromol. Rapid Commun. 36, 909 (2015).10.1002/marc.201500021CrossRefGoogle ScholarPubMed
Wang, J., Zhang, W., Zheng, Y., Zhang, N., and Zhang, C.: Multi-functionalization of magnetic graphene by surface-initiated ICAR ATRP mediated by polydopamine chemistry for adsorption and speciation of arsenic. Appl. Surf. Sci. 478, 15 (2019).10.1016/j.apsusc.2019.01.188CrossRefGoogle Scholar
Xue, S., Li, C., Li, J., Zhu, H., and Guo, Y.: A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane. J. Membr. Sci. 524, 409 (2017).10.1016/j.memsci.2016.11.075CrossRefGoogle Scholar
Wang, J. and Wei, J.: Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling. Appl. Surf. Sci. 382, 202 (2016).10.1016/j.apsusc.2016.03.223CrossRefGoogle Scholar
Qi, H., Sui, X., Yuan, J., Wei, Y., and Zhang, L.: Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol. Mater. Eng. 295, 695 (2010).10.1002/mame.201000018CrossRefGoogle Scholar
Yang, Z., Si, J., Cui, Z., Ye, J., Wang, X., Wang, Q., Peng, K., Chen, W., and Chen, S.C.: Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils. Carbohydr. Polym. 174, 750 (2017).10.1016/j.carbpol.2017.07.010CrossRefGoogle ScholarPubMed
Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).10.1126/science.1147241CrossRefGoogle ScholarPubMed
Chakrabarty, B., Ghoshal, A.K., and Purkait, M.K.: Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Membr. Sci. 325, 427 (2008).10.1016/j.memsci.2008.08.007CrossRefGoogle Scholar
Zin, G., Wu, J., Rezzadori, K., Petrus, J.C.C., Luccio, M.D., and Li, Q.: Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine. Sep. Purif. Technol. 212, 641 (2019).10.1016/j.seppur.2018.10.014CrossRefGoogle Scholar
Yang, H.C., Pi, J.K., Liao, K.J., Huang, H., Wu, Q.Y., Huang, X.J., and Xu, Z.K.: Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 6, 12566 (2014).10.1021/am502490jCrossRefGoogle ScholarPubMed
Wu, J.X., Zhang, J., Kang, Y.L., Wu, G., Chen, S.C., and Wang, Y.Z.: Reusable and recyclable superhydrophilic electrospun nanofibrous membranes with in situ co-cross-linked polymer-chitin nanowhisker network for robust oil-in-water emulsion separation. ACS Sustainable Chem. Eng. 6, 1753 (2018).CrossRefGoogle Scholar
Supplementary material: PDF

Wang and Wang Supplementary Materials

Wang and Wang Supplementary Materials

Download Wang and Wang Supplementary Materials(PDF)
PDF 718.3 KB