Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T11:33:57.208Z Has data issue: false hasContentIssue false

A simple strategy for fabricating honeycomb patterns on commercially available polymer film under a wide humidity range

Published online by Cambridge University Press:  16 November 2020

Kai Huang
Affiliation:
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin300387, P.R. China
Qi Cheng
Affiliation:
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin300387, P.R. China
Honglei Zhang
Affiliation:
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin300387, P.R. China
Ligang Lin*
Affiliation:
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin300387, P.R. China
Qiying Wang
Affiliation:
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin300387, P.R. China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A simple and effective strategy is proposed for fabricating honeycomb-patterned ethyl cellulose (EC) films via a combination of the dip-coating and breath figure methods under a wide humidity range (40–90%). A mixture of toluene and methanol as a volatile solvent/nonsolvent pair was used to effectively control the surface morphology. Additionally, honeycomb patterns were successfully formed via dip-coating under a low humidity (relative humidity less than 40%), when water was directly added into the mixed solution. The important factors that influenced the morphology of EC honeycomb-patterned films were investigated, such as the humidity, solution concentration, and the withdrawal speed during dip-coating. The pore sizes could be controlled by changing the film-formation conditions. Water contact angle enables a transition from hydrophilic to hydrophobic. The possible mechanisms of honeycomb pattern formation are discussed. The fabrication of an ordered honeycomb-patterned film in a cost-effective and convenient manner will have broad application potential in the future.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shebi, A. and Lisa, S.: Pectin mediated synthesis of nano hydroxyapatite-decorated poly(lactic acid) honeycomb membranes for tissue engineering. Carbohydr. Polym. 201, 3947 (2018).10.1016/j.carbpol.2018.08.012CrossRefGoogle ScholarPubMed
Li, B., Kan, L., Zhang, X.Y., Li, J., Li, R.T., Gui, Q.Y., Qiu, D.L., He, F., Ma, N., Wang, Y.P., and Wei, H.: Biomimetic bone-like hydroxyapatite by mineralization on supramolecular porous fiber networks. Langmuir 33, 84938502 (2017).10.1021/acs.langmuir.7b02394CrossRefGoogle ScholarPubMed
Zhou, W.D., Chen, Y., Roh, T., Lin, Y.N., Ling, S.J., Zhao, S.W., Lin, J.D., Khalil, N., Cairns, D.M., Manousiouthakis, E., Tse, M., and Kaplan, D.L.: Multifunctional bioreactor system for human intestine tissues. ACS Biomater. Sci. Eng. 4, 231239 (2018).10.1021/acsbiomaterials.7b00794CrossRefGoogle ScholarPubMed
Zhang, L., Chen, L., Liu, S.X., Gong, J., Tang, Q., and Su, Z.M.: Honeycomb-patterned hybrid films of surfactant-encapsulated polyoxometalates by a breath figure method and its electrocatalysis for BrO3. Dalton Trans. 47, 105111 (2017).10.1039/C7DT03201CCrossRefGoogle ScholarPubMed
Chen, H.Y., Liu, J.L., Xu, W.C., Wang, Z.F., Wang, C.Y., and Zhang, M.: Selective assembly of silver nanoparticles on honeycomb films and their surface-enhanced Raman scattering. Colloids Surf. A 506, 782788 (2016).10.1016/j.colsurfa.2016.07.043CrossRefGoogle Scholar
Shin, B.K., Male, U., and Huh, D.S.: In-situ pore filling of TiO2 nanoparticles in honeycomb patterned porous films: A modified breath figure method. Polymer 135, 18 (2018).10.1016/j.polymer.2017.12.011CrossRefGoogle Scholar
Xu, C., Feng, R., Song, F., Wu, J-M., Luo, Y.Q., Wang, X.L., and Wang, Y.Z.: Continuous and controlled directional water transportation on a hydrophobic/superhydrophobic patterned surface. Chem. Eng. J. 352, 722729 (2018).10.1016/j.cej.2018.07.073CrossRefGoogle Scholar
Wan, L.S., Li, J.W., Ke, B.B., and Xu, Z.K.: Ordered microporous membranes templated by breath figures for size-selective separation. J. Am. Chem. Soc. 134, 9598 (2012).10.1021/ja2092745CrossRefGoogle ScholarPubMed
Dong, C. and Hao, J.: Honeycomb films with ordered patterns and structures .In Comprehensive Supramolecular Chemistry II, Atwood, Jerry L., ed. (Elsevier Ltd., Netherlands, 2017), pp. 207229.10.1016/B978-0-12-409547-2.12641-1CrossRefGoogle Scholar
Bormashenko, E.: Breath-figure self-assembly, a versatile method of manufacturing membranes and porous structures: Physical, chemical and technological aspects. Membranes 7, 45 (2017).10.3390/membranes7030045CrossRefGoogle ScholarPubMed
Zhang, A.J., Bai, H., and Li, L.: Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 115, 98019868 (2015).10.1021/acs.chemrev.5b00069CrossRefGoogle ScholarPubMed
Aynard, A., Pessoni, L., and Billon, L.: Directed self-assembly in “breath figure” templating of block copolymers followed by soft hydrolysis-condensation: One step towards synthetic bio-inspired silica diatoms exoskeleton. Polymer 210, 123047 (2020).10.1016/j.polymer.2020.123047CrossRefGoogle Scholar
Liu, Q., Wu, Y., and Li, Z.X.: Facile preparation of super-hydrophobic fabrics composed of fibres with microporous or microspherical coatings using the static breath figure method. Prog. Org. Coat. 149, 105938 (2020).10.1016/j.porgcoat.2020.105938CrossRefGoogle Scholar
Huang, C.X., Shen, X.T., Liu, X.J., Chen, Z.L., Shu, B.L., Wan, L.B., Liu, H.J., and He, J.: Hybrid breath figure method: A new insight in Petri dishes for cell culture. J. Colloid Interface Sci. 541, 114122 (2019).10.1016/j.jcis.2019.01.074CrossRefGoogle ScholarPubMed
Hernández-Guerrero, M. and Stenzel, M.H.: Honeycomb structured polymer films via breath figures. Polym. Chem. 3, 563577 (2012).10.1039/C1PY00219HCrossRefGoogle Scholar
Bai, H., Du, C., Zhang, A.J., and Li, L.: Breath figure arrays: Unconventional fabrications, functionalizations, and applications. Angew. Chem. Int. Ed. 52, 1224012255 (2013).10.1002/anie.201303594CrossRefGoogle ScholarPubMed
Wan, L.S., Zhu, L.W., Ou, Y., and Xu, Z.K.: Multiple interfaces in self-assembled breath figures. Chem. Commun. 50, 40244039 (2014).10.1039/C3CC49826CCrossRefGoogle ScholarPubMed
Wu, W., Wang, X., Han, X., Yang, Z., Gao, G., Zhang, Y., Hu, J., Tan, Y., Pan, A., and Pan, C.: Flexible photodetector arrays based on patterned CH3NH3PbI3-xClx perovskite film for real-time photosensing and imaging. Adv. Mater. 31, 1805913 (2019).10.1002/adma.201805913CrossRefGoogle Scholar
Zhang, L., Chen, L., Liu, S-x., Gong, J., Tang, Q., and Su, Z-m.: Honeycomb-patterned hybrid films of surfactant-encapsulated polyoxometalates by a breath figure method and its electrocatalysis for BrO3. Dalton Trans. 47, 105111 (2018).10.1039/C7DT03201CCrossRefGoogle Scholar
Kamei, J., Abe, H., and Yabu, H.: Biomimetic bubble-repellent tubes: Microdimple arrays enhance repellency of bubbles inside of tubes. Langmuir 33, 585590 (2017).10.1021/acs.langmuir.6b04155CrossRefGoogle ScholarPubMed
Marcasuzaa, P., Save, M., Gérard, P., and Billon, L.: When a pH-triggered nanopatterned shape transition drives the wettability of a hierarchically self-organized film: A bio-inspired effect of “sea Anemone”. J. Colloid Interface. Sci. 581, 96101 (2021).10.1016/j.jcis.2020.07.130CrossRefGoogle ScholarPubMed
Heng, L.P., Wang, B., Li, M.C., Zhang, Y.Q., and Jiang, L.: Advances in fabrication materials of honeycomb structure films by the breath-figure method. Materials 6, 460482 (2013).10.3390/ma6020460CrossRefGoogle ScholarPubMed
Yin, S.Y., Goldovsky, Y.L., Herzberg, M., Liu, L., Sun, H., Zhang, Y.Y., Meng, F.B., Cao, X.B., Sun, D.D., Chen, H.Y., Kushmaro, A., and Chen, X.D.: Functional free-standing graphene honeycomb films. Adv. Funct. Mater. 23, 29722978 (2013).10.1002/adfm.201203491CrossRefGoogle Scholar
Ma, H.M., Cui, J.W., Song, A.X., and Hao, J.C.: Fabrication of freestanding honeycomb films with through-pore structures via air/water interfacial self-assembly. Chem. Commun. 47, 11541156 (2011).10.1039/C0CC02680HCrossRefGoogle ScholarPubMed
Park, M.S., Joo, W., and Kim, J.K.: Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition. Langmuir 22, 45944598 (2006).10.1021/la053009tCrossRefGoogle ScholarPubMed
Bui, V.T., Thuy, L.T., Tran, Q.C., Nguyen, V.T., Dao, V.D., Choi, J.S., and Choi, H.S.: Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 320, 561569 (2017).10.1016/j.cej.2017.03.086CrossRefGoogle Scholar
Park, M.S. and Kim, J.K.: Breath figure patterns prepared by spin coating in a dry environment. Langmuir 20, 53475352 (2004).10.1021/la035915gCrossRefGoogle Scholar
Bormashenko, E., Malkin, A., Musin, A., Bormashenko, Y., Whyman, G., Litvak, N., Barkay, Z., and Machavariani, V.: Mesoscopic patterning in evaporated polymer solutions: Poly(ethylene glycol) and room-temperature-vulcanized polyorganosilanes/-siloxanes promote formation of honeycomb structures. Macromol. Chem. Phys. 209, 873873 (2008).10.1002/macp.200800134CrossRefGoogle Scholar
Bormashenko, E., Balter, S., Pogreb, R., and Aurbach, D.: Single-step technique allowing formation of microscaled thermally stable polymer honeycomb reliefs demonstrating reversible wettability. Polym. Adv. Technol. 22, 9498 (2011).10.1002/pat.1698CrossRefGoogle Scholar
Mansouri, J., Yapit, E., and Chen, V.: Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. J. Membr. Sci. 444, 237251 (2013).10.1016/j.memsci.2013.05.022CrossRefGoogle Scholar
Srinivasarao, M., Collings, D., Philips, A., and Patel, S.: Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 7983 (2001).10.1126/science.1057887CrossRefGoogle Scholar
Peng, J., Han, Y.C., Yang, Y.M., and Li, B.Y.: The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447452 (2004).10.1016/j.polymer.2003.11.019CrossRefGoogle Scholar
Brinker, C.J., Frye, G.C., Hurd, A.J., and Ashley, C.S.: Fundamentals of sol-gel film dip-coating. Thin Solid Films 201, 97108 (1991).10.1016/0040-6090(91)90158-TCrossRefGoogle Scholar
Yang, C.C., Josefowicz, J.Y., and Alexandru, L.: Deposition of ultrathin films by a withdrawal method. Thin Solid Films 74, 117127 (1980).10.1016/0040-6090(80)90446-0CrossRefGoogle Scholar
Cassie, A.B.D. and Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551 (1944).10.1039/tf9444000546CrossRefGoogle Scholar
Dong, R.H., Yan, J.L., Ma, H.M., Fang, Y., and Hao, J.C.: Dimensional architecture of ferrocenyl-based oligomer honeycomb-patterned films: From monolayer to multilayer. Langmuir 27, 90529056 (2011).10.1021/la201264uCrossRefGoogle ScholarPubMed
Girard, F., Antoni, M., Faure, S., and Steinchen, A.: Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22, 1108511091 (2006).10.1021/la061572lCrossRefGoogle ScholarPubMed
Tsoumpas, Y., Dehaeck, S., Rednikov, A., and Colinet, P.: Effect of Marangoni flows on the shape of thin sessile droplets evaporating into air. Langmuir 31, 1333413340 (2015).10.1021/acs.langmuir.5b02673CrossRefGoogle ScholarPubMed
De Dier, R., Sempels, W., Hofkens, J., and Vermant, J.: Thermocapillary fingering in surfactant-laden water droplets. Langmuir 30, 1333813344 (2014).CrossRefGoogle ScholarPubMed
Jiang, L.W., Wang, R., Yang, B.X., Li, T.J., Tryk, D.A., Fujishima, A., Hashimoto, K., and Zhu, D.B.: Binary cooperative complementary nanoscale interfacial materials. Pure Appl. Chem. 72, 7381 (2000).10.1351/pac200072010073CrossRefGoogle Scholar
Fang, R.C., Liu, M.J., Liu, H.L., and Jiang, L.: Bioinspired interfacial materials: From binary cooperative complementary interfaces to superwettability systems. Adv. Mater. Interfaces 5, 1701176 (2018).10.1002/admi.201701176CrossRefGoogle Scholar
Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., and Zhu, D.: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14, 18571860 (2002).10.1002/adma.200290020CrossRefGoogle Scholar
Wang, D.M. and Lai, J.Y.: Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2, 229237 (2013).CrossRefGoogle Scholar
Supplementary material: File

Huang et al. supplementary material

Figures S1-S2

Download Huang et al. supplementary material(File)
File 827.2 KB