Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T22:10:45.876Z Has data issue: false hasContentIssue false

Nearly full-density pressureless sintering of AlCoCrFeNi-based high-entropy alloy powders

Published online by Cambridge University Press:  14 February 2019

Sahil Rohila
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
Rahul B. Mane
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
Govind Ummethala
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
Bharat B. Panigrahi*
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

AlCoCrFeNi is among the promising high-entropy alloys (HEAs) that possess high strength with considerable ductility. Powder sintering is one of the competitive routes for the production of HEA powders. However, sintering of HEA powders under a pressureless condition is difficult. The present work aims to produce high-density components from mechanically alloyed AlCoCrFeNi HEA powders through the pressureless sintering method. Nearly full density was achieved at 1275 °C. Sintering was performed in the presence of a viscous phase in the temperature range of 1200–1250 °C, which was confirmed through differential scanning calorimetry and dilatometric measurements. This viscous phase was found have a Cr-rich composition, detected by interrupting the sintering and quenching of the sample. The powder initially contained the BCC phase with a small fraction of FCC and other phases. During sintering, a significant fraction of the FCC phase and nanosized B2 phase were formed. Sintered sample had a hardness of 679 ± 20 Hv.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys (Springer, Cham, 2016).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Ranganathan, S.: Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 85, 1404 (2003).Google Scholar
Senkov, O.N., Miracle, D.B., Chaput, K.J., and Couzinie, J.P.: Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 33, 1 (2018).CrossRefGoogle Scholar
Lu, Y., Dong, Y., Guo, S., Jiang, L., Kang, H., Wang, T., Wen, B., Wang, Z., Jie, J., Cao, Z., Ruan, H., and Tingju, L.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).CrossRefGoogle ScholarPubMed
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Singh, S., Wanderka, N., and Murty, B.S.: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182 (2011).CrossRefGoogle Scholar
Chattopadhyay, C. and Murty, B.S.: Kinetic modification of the ‘confusion principle’ for metallic glass formation. Scr. Mater. 116, 7 (2016).CrossRefGoogle Scholar
Xiao, D.H., Zhou, P.F., Wu, W.Q., Diao, H.Y., Gao, M.C., Song, M., and Liaw, P.K.: Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi–(Cr,Ti) high entropy alloys. Mater. Des. 116, 438 (2017).CrossRefGoogle Scholar
Guo, L., Wu, W., Song, N., Wang, Z., and Song, M.: Effect of annealing on the microstructural evolution and phase transition in an AlCrCuFeNi2 high entropy alloy. Micron 101, 69 (2017).CrossRefGoogle Scholar
Guo, L., Xiao, D., Wu, W., Song, N., and Song, M.: Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100−xFex high entropy alloys processed by spark plasma. Intermetallics 103, 1 (2018).CrossRefGoogle Scholar
Wang, Y.P., Li, B.S., Ren, M.X., Yang, C., and Fu, H.Z.: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154 (2008).CrossRefGoogle Scholar
Sharma, A., Singh, P., Johnson, D.D., Liaw, P.K., and Balasubramanian, G.: Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy. Sci. Rep. 6, 31028 (2016).CrossRefGoogle ScholarPubMed
Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., and Wanderka, N.: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212 (2013).CrossRefGoogle ScholarPubMed
Santodonato, L.J., Liaw, P.K., Unocic, R.R., Bei, H., and Morris, J.R.: Predictive multiphase evolution in Al-containing high-entropy alloys. Nat. Commun. 9, 4520 (2018).CrossRefGoogle ScholarPubMed
Manzoni, A., Singh, S., Daoud, H.M., Popp, R., Völkl, R., Glatzel, U., and Wanderka, N.: On the path to optimizing the Al–Co–Cr–Cu–Fe–Ni–Ti high entropy alloy family for high temperature applications. Entropy 18, 104 (2016).CrossRefGoogle Scholar
Zhang, C., Zhang, F., Diao, H., Gao, M.C., Tang, Z., Poplawsky, J.D., and Liaw, P.K.: Understanding phase stability of Al–Co–Cr–Fe–Ni high entropy alloys. Mater. Des. 109, 425 (2016).CrossRefGoogle Scholar
Pradeep, K.G., Wanderka, N., Choi, P., Banhart, J., Murty, B.S., and Raabe, D.: Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater. 61, 4696 (2013).CrossRefGoogle Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).CrossRefGoogle ScholarPubMed
Ji, W., Fu, Z., Wang, W., Wang, H., Zhang, J., Wang, Y., and Zhang, F.: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloy. Comp. 589, 61 (2014).CrossRefGoogle Scholar
Shiratori, H., Fujieda, T., Yamanaka, K., Koizumi, Y., Kuwabara, K., Kato, T., and Chiba, A.: Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Mater. Sci. Eng., A 656, 39 (2016).CrossRefGoogle Scholar
Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).CrossRefGoogle Scholar
Qin, G., Xue, W., Fan, C., Chen, R., Wang, L., Su, Y., Ding, H., and Guo, J.: Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high-entropy alloys. Mater. Sci. Eng., A 710, 200 (2018).CrossRefGoogle Scholar
Shivam, V., Basu, J., Pandey, V., Shadangi, Y., and Mukhopadhyay, N.K.: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 2221 (2018).CrossRefGoogle Scholar
Vaidya, M., Prasad, A., Parakh, A., and Murty, B.S.: Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 126, 37 (2017).CrossRefGoogle Scholar
Eißmann, N., Klöden, B., Weißgärber, T., and Kieback, B.: High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 60, 184 (2017).CrossRefGoogle Scholar
Liu, Y., Wang, J., Fang, Q., Liu, B., Wu, Y., and Chen, S.: Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16 (2016).CrossRefGoogle Scholar
Mane, R.B. and Panigrahi, B.B.: Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders. J. Mater. Res. 33, 3321 (2018).CrossRefGoogle Scholar
Mane, R.B. and Panigrahi, B.B.: Effect of alloying order on non-isothermal sintering kinetics of mechanically alloyed high entropy alloy powders. Mater. Lett. 217, 131 (2018).CrossRefGoogle Scholar
Tsai, K.Y., Tsai, M.H., and Yeh, J.W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).CrossRefGoogle Scholar
Tang, Z., Senkov, O.N., Parish, C.M., Zhang, C., Zhang, F., Santodonato, L.J., Wang, G., Zhao, G., Yang, F., and Liaw, P.K.: Tensile ductility of an AlCoCrFeNi multi-phase high entropy alloy thorough hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647, 229 (2015).CrossRefGoogle Scholar
Zhang, A., Han, J., Meng, J., Su, B., and Li, P.: Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181, 82 (2016).CrossRefGoogle Scholar
German, R.M.: Sintering Theory and Practice (John Wiley and Sons, Inc., New York, 1996).Google Scholar