Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T11:23:12.396Z Has data issue: false hasContentIssue false

Improvement of the addition amount and dispersion of hydroxyapatite in the poly(lactic acid) matrix by the compatibilizer-epoxidized soybean oil

Published online by Cambridge University Press:  11 June 2020

Liang Zhao*
Affiliation:
China Center for Special Economic Zone Research, Shenzhen University, Shenzhen518060, China Shenzhen High Technology Investment Group Co., Ltd, Shenzhen518040, China
Simin Cheng
Affiliation:
Shanghai Electric Power T&D Group, Shanghai200336, China
Suhua Liu
Affiliation:
Shenzhen High Technology Investment Group Co., Ltd, Shenzhen518040, China
Xingmin Gao
Affiliation:
China Center for Special Economic Zone Research, Shenzhen University, Shenzhen518060, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The addition amount and dispersion of inorganic particles into poly(lactic acid) (PLA) still remain a great difficulty, and in the present study, epoxidized soybean oil was used to improve the compatibility between hydroxyapatite (HA) and PLA via the melt blending method. Scanning electron microscopy shows that HA particles can be well dispersed in the PLA matrix when the addition amount is less than 20% in mass, whereas the agglomeration of HA particles and a discrete phase of PLA could be observed when the amount increases to 30%. Therefore, the maximum amount of HA particles can be achieved for the composite with 20% HA which can be also maintaining the bending strength of 71.6 MPa. The osteoblast cells were used to characterize the biocompatibility of the HA/PLA composite, and the results indicate that the number of cells in per unit volume cultured on the HA/PLA composite is 10% higher than that of the PLA. Based on the improved cell biocompatibility and mechanical strength compared to PLA, the composite of HA/PLA prepared in the present study can be served as a potential candidate for the bone fracture repair.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).CrossRefGoogle ScholarPubMed
Nagels, J., Stokdijk, M., and Rozing, P.M.: Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elbow Surg. 12, 35 (2003).CrossRefGoogle ScholarPubMed
Serra, T., Planell, J.A., and Navarro, M.: High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521 (2013).CrossRefGoogle ScholarPubMed
Saito, E., Liao, E.E., Hu, W., Krebsbach, P.H., and Hollister, S.J.: Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo. J. Tissue Eng. Regen. Med. 7, 99 (2013).CrossRefGoogle ScholarPubMed
Tiainen, J., Soini, Y., Tormala, P., Waris, T., and Ashammakhi, N.: Self-reinforced polylactide/polyglycolide 80/20 screws take more than 1 1/2 years to resorb in rabbit cranial bone. J. Biomed. Mater. Res. B 70, 49 (2004).CrossRefGoogle ScholarPubMed
Isotalo, T.M., Nuutine, J.P., Vaajanen, A., Martikainen, P.M., Laurila, M., Tormala, P., Talja, M., and Tammela, T.L.: Biocompatibility properties of a new braided biodegradable urethral stent: A comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra. BJU Int. 97, 856 (2006).CrossRefGoogle Scholar
Khajavi, R., Abbasipour, M., and Bahador, A.: Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J. Appl. Polym. Sci. 133, 428833 (2016).CrossRefGoogle Scholar
Bergsma, J.E., Debruijn, W.C., Rozema, F.R., Bos, R., and Boering, G.: Late degradation tissue-response to poly(L-lactide) bone plates and screws. Biomaterials 16, 25 (1995).CrossRefGoogle ScholarPubMed
Shikinami, Y., Matsusue, Y., and Nakamura, T.: The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly L-lactide (F-u-HA/PLLA). Biomaterials 26, 5542 (2005).CrossRefGoogle Scholar
Hoveizi, E., Massumi, M., Ebrahimi-barough, S., Tavakol, S., and Ai, J.: Differential effect of Activin A and WNT3a on definitive endoderm differentiation on electrospun nanofibrous PCL scaffold. Cell Biol. Int. 39, 591 (2015).CrossRefGoogle ScholarPubMed
Supova, M.: Problem of hydroxyapatite dispersion in polymer matrices: A review. J. Mater. Sci. Mater. Med. 20, 1201 (2009).CrossRefGoogle ScholarPubMed
Li, J., Lu, X.L., and Zheng, Y.F.: Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl. Surf. Sci. 255, 494 (2008).Google Scholar
Dupraz, A., DeWijn, J.R., VanderMeer, S., and DeGroot, K.: Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J. Biomed. Mater. Res. 30, 231 (1996).3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Jiang, L., Xiong, C., Chen, D., Jiang, L., and Pang, X.: Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite. Appl. Surf. Sci. 259, 72 (2012).Google Scholar
Liu, Q., de Wijn, J.R., de Groot, K., and van Blitterswijk, C.A.: Surface modification of nano-apatite by grafting organic polymer. Biomaterials 19, 1067 (1998).CrossRefGoogle ScholarPubMed
Rao, M., Su, Q., Liu, Z., Liang, P., Wu, N., Quan, C., and Jiang, Q.: Preparation and characterization of a poly(methyl methacrylate) based composite bone cement containing poly(acrylate-co-silane) modified hydroxyapatite nanoparticles. J. Appl. Polym. Sci. 131, 40587 (2014).CrossRefGoogle Scholar
Jiang, L., Xiong, C., Jiang, L., Chen, D., and Li, Q.: Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites. Mater. Res. Bull. 48, 1233 (2013).Google Scholar
Cui, Y., Liu, Y., Cui, Y., Jing, X., Zhang, P., and Chen, X.: The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair. Acta Biomater. 5, 2680 (2009).CrossRefGoogle ScholarPubMed
Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., and Zhu, J.: Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohyd. Polym. 92, 810 (2013).CrossRefGoogle ScholarPubMed
Tsui, A., Wright, Z.C., and Frank, C.W.: Biodegradable Polyesters from Renewable Resources. Annu. Rev. Chem. Biom 4, 143 (2013).Google Scholar
Oromiehie, A.R., Lari, T.T., and Rabiee, A.: Physical and thermal mechanical properties of corn starch/LDPE composites. J. Appl. Polym. Sci. 127, 1128 (2013).CrossRefGoogle Scholar
Rodriguez-Gonzalez, F.J., Ramsay, B.A., and Favis, B.D.: Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohyd. Polym. 58, 139 (2004).CrossRefGoogle Scholar
Ali, F., Chang, Y., Kang, S.C., and Yoon, J.Y.: Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym. Bull. 62, 91 (2009).CrossRefGoogle Scholar
Brostrom, J., Boss, A., and Chronakis, I.S.: Biodegradable films of partly branched poly(L-lactide)-co-poly(epsilon-caprolactone) copolymer: Modulation of phase morphology, plasticization properties and thermal depolymerization. Biomacromolecules 5, 1124 (2004).CrossRefGoogle ScholarPubMed
Jiang, L.X., Jiang, L.Y., Xu, L.J., Han, C.T., and Xiong, C.D.: Effect of a new surface-grafting method for nano-hydroxyapatite on the dispersion and the mechanical enhancement for poly(lactide-co-glycolide). Express Polym. Lett. 8, 133 (2014).CrossRefGoogle Scholar
Lee, J.H. and Shofner, M.L.: Copolymer-mediated synthesis of hydroxyapatite nanoparticles in an organic solvent. Langmuir 29, 10940 (2013).CrossRefGoogle Scholar
Cheng, Z.H., Yasukawa, A., Kandori, K., and Ishikawa, T.: FTIR study on incorporation of CO2 into calcium hydroxyapatite. J. Chem. Soc., Faraday Trans. 94, 1501 (1998).CrossRefGoogle Scholar
Yasuniwa, M., Tsubakihara, S., Ohoshita, K., and Tokudome, S.: X-ray studies on the double melting behavior of poly(butylene terephthalate). J. Polym. Sci. Polym. Phys. 39, 2005 (2001).CrossRefGoogle Scholar
Yasuniwa, M., Tsubakihara, S., Sugimoto, Y., and Nakafuku, C.: Thermal analysis of the double-melting behavior of poly(L-lactic acid). J. Polym. Sci. Polym. Phys. 42, 25 (2004).Google Scholar
Chen, L., Qin, Y., Wang, X., Li, Y., Zhao, X., and Wang, F.: Toughening of poly(propylene carbonate) by hyperbranched poly(ester-amide) via hydrogen bonding interaction. Polym. Int. 60, 1697 (2011).CrossRefGoogle Scholar
Cheng, X. and Laurent, M.M.: Epoxidized soybean oil-plasticized poly(lactic acid) films performance as impacted by storage. J. Appl. Polym. Sci. 133, 4320 (2016).Google Scholar
Serra, T., Planell, J.A., and Navarro, M.: High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521 (2013).CrossRefGoogle ScholarPubMed
Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., and He, D.: 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. Acs Appl. Mater. Interfaces 6, 14952 (2014).CrossRefGoogle ScholarPubMed