Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T11:57:00.031Z Has data issue: false hasContentIssue false

Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy

Published online by Cambridge University Press:  17 June 2020

Ogulcan Akgul
Affiliation:
Mechanical Engineering Department, Hacettepe University, Ankara06800, Turkey
Halil O. Tugrul
Affiliation:
Mechanical Engineering Department, Hacettepe University, Ankara06800, Turkey
Benat Kockar*
Affiliation:
Mechanical Engineering Department, Hacettepe University, Ankara06800, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, the effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy was studied by differential scanning calorimetry and via running isobaric thermal cycling experiments. The cooling rates were set to 5, 10, and 15 °C/min for each cycle in both experiments, while the heating rate was kept as 10 °C/min. It was found that the transformation temperatures and thermal hysteresis values do not depend on the change in the cooling rate. On the other hand, the austenite to martensite transformation enthalpy as measured from DSC analyses increases with the increase in the cooling rate due to the higher measurement sensitivity at higher scanning rates. Recoverable strain values which were determined from isobaric thermal cycling experiments do not differ since the transforming volume does not change with the change of the cooling rate. All these findings are explained based on the fundamental thermodynamical approach.

Type
Novel Synthesis and Processing of Metals
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hartl, D.J. and Lagoudas, D.C.: Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. G 221, 535552 (2007).CrossRefGoogle Scholar
Jani, J.M., Leary, M., and Subic, A.: Shape memory alloys in automotive applications. Appl. Mech. Mater. 663, 248253 (2014).CrossRefGoogle Scholar
Epps, J.J. and Chopra, I.: In-flight tracking of helicopter rotor blades using shape memory alloy actuators. Smart Mater. Struct. 10, 104111 (2001).CrossRefGoogle Scholar
El Feninat, F., Laroche, G., Fiset, M., and Mantovani, D.: Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91104 (2002).10.1002/1527-2648(200203)4:3<91::AID-ADEM91>3.0.CO;2-BGoogle Scholar
Otsuka, K. and Ren, X.B.: Recent developments in the research of shape memory alloys. Intermetallics 7, 511528 (1999).CrossRefGoogle Scholar
Wayman, C.M. and Duerig, T.W.: An lntroduction to martensite and shape memory. In Engineering Aspects of Shape Memory Alloys, Duerig, T.W., Melton, K.N., Stöckel, D., and Wayman, C.M., eds. (Butterworth, Boston, MA, 1990); p. 3.CrossRefGoogle Scholar
Otsuka, K. and Ren, X.B.: Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511678 (2005).Google Scholar
Ma, J., Karaman, I., and Noebe, R.D.: High temperature shape memory alloys. Int. Mater. Rev. 55, 257315 (2010).Google Scholar
Meng, X.L., Cai, W., Chen, F., and Zhao, L.C.: Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr. Mater. 54, 15991604 (2006).CrossRefGoogle Scholar
Evirgen, A., Karaman, I., Noebe, R.D., Santamarta, R., and Pons, J.: Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr. Mater. 69, 354357 (2013).CrossRefGoogle Scholar
Evirgen, A., Karaman, I., Santamarta, R., Pons, J., and Noebe, R.D.: Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater. 83, 4860 (2015).10.1016/j.actamat.2014.09.027Google Scholar
Evirgen, A., Karaman, I., Pons, J., Santamarta, R., and Noebe, R.D.: Role of nanoprecipitation on the microstructure and shape memory characteristics of a new Ni50.3Ti34.7Zr15 shape memory alloy. Mater. Sci. Eng. A 655, 193203 (2016).CrossRefGoogle Scholar
Evirgen, A., Basner, F., Karaman, I., Noebe, R.D., Pons, J., and Santamarta, R.: Effect of aging on the martensitic transformation characteristics of a Ni-rich NiTiHf high temperature shape memory alloy. Funct. Mater. Lett. 5, 1250038 (2012).CrossRefGoogle Scholar
Evirgen, A., Karaman, I., Santamarta, R., Pons, J., Hayrettin, C., and Noebe, R.D.: Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater. 121, 374383 (2016).CrossRefGoogle Scholar
Santamarta, R., Arroyave, R., Pons, J., Evirgen, A., Karaman, I., Karaca, H.E., and Noebe, R.D.: TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr shape memory alloys. Acta Mater. 61, 61916206 (2013).CrossRefGoogle Scholar
Evirgen, A., Karaman, I., Santamarta, R., Pons, J., and Noebe, R.D.: Microstructural characterization and superelastic response of a Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scr. Mater. 81, 1215 (2014).CrossRefGoogle Scholar
Perez-Sierra, A.M., Pons, J., Santamarta, R., Karaman, I., and Noebe, R.D.: Stability of a Ni-rich Ni-Ti-Zr high temperature shape memory alloy upon low temperature aging and thermal cycling. Scr. Mater. 124, 4750 (2016).CrossRefGoogle Scholar
Patriarca, L., Wu, Y., Sehitoglu, H., and Chumlyakov, Y.I.: High temperature shape memory behavior of Ni50.3Ti25Hf24.7 single crystals. Scr. Mater. 115, 133136 (2016).CrossRefGoogle Scholar
Aaron, S.P., Bigelow, G.S., Yang, J., Shukla, D.P., Saghaian, S.M., Rogers, R., Garg, A., Karaca, H.E., Chumlyakov, Y.I., Bhattacharya, K., and Noebe, R.D.: Transformation strains and temperatures of a nickel–titanium–hafnium high temperature shape memory alloy. Acta Mater. 76, 4053 (2014).Google Scholar
Patriarca, L., Sehitoglu, H., Panchenko, E.Y., and Chumlyakov, Y.I.: High-temperature functional behavior of single crystal Ni51.2Ti23.4Hf25.4 shape memory alloy. Acta Mater. 106, 333343 (2016).10.1016/j.actamat.2016.01.015CrossRefGoogle Scholar
Hornbuckle, B.C., Sasaki, T.T., Bigelow, G.S., Noebe, R.D., Weaver, M.L., and Thompson, G.B.: Structure-property relationships in a precipitation strengthened Ni-29.7Ti-20Hf (at.%) shape memory alloy. Mater. Sci. Eng. A 637, 6369 (2015).CrossRefGoogle Scholar
Patriarca, L. and Sehitoglu, H.: High-temperature superelasticity of Ni50.6Ti24.4Hf25.0 shape memory alloy. Scr. Mater. 101, 1215 (2015).CrossRefGoogle Scholar
Wu, Y., Patriarca, L., Sehitoglu, H., and Chumlyakov, Y.I.: Ultrahigh tensile transformation strains in new Ni50.5Ti36.2Hf13.3 shape memory alloy. Scr. Mater. 118, 5154 (2016).CrossRefGoogle Scholar
Abuzaid, W. and Sehitoglu, H.: Functional fatigue of Ni50.3Ti25Hf24.7 – Heterogeneities and evolution of local transformation strains. Mater. Sci. Eng. A 696, 482492 (2017).CrossRefGoogle Scholar
Saghaian, S.M., Karaca, H.E., Tobe, H., Turabi, A.S., Saedi, S., Saghaian, S.E., Chumlyakov, Y.I., and Noebe, R.D.: High strength NiTiHf shape memory alloys with tailorable properties. Acta Mater. 134, 211220 (2017).CrossRefGoogle Scholar
Karaca, H.E., Saghaian, S., Ded, G., Tobe, H., Basaran, B., Maier, H.J., Noebe, R.D., and Chumlyakov, Y.I.: Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater. 61, 74227431 (2013).CrossRefGoogle Scholar
Karakoc, O., Hayrettin, C., Bass, M., Wang, S.J., Canadinc, D., Mabe, H.J., Lagoudas, D.C., and Karaman, I.: Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater. 138, 185197 (2017).CrossRefGoogle Scholar
Karakoc, O., Hayrettin, C., Canadinc, D., and Karaman, I.: Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys. Acta Mater. 153, 156168 (2018).Google Scholar
Saygili, H.H., Tugrul, H.O., and Kockar, B.: Effect of aging heat treatment on the high cycle fatigue life of Ni50.3Ti29.7Hf20 high-temperature shape memory alloy. Shap. Mem. Superelasticity 5, 3241 (2019).CrossRefGoogle Scholar
Babacan, N., Bilal, M., Hayrettin, C., Liu, J., Benafan, O., and Karaman, I.: Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Mater. 157, 228244 (2018).CrossRefGoogle Scholar
Umale, T., Salas, D., Tomes, B., Arróyave, R., and Karaman, I.: The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scr. Mater. 161, 7883 (2018).CrossRefGoogle Scholar
Wang, Z.G., Zu, T.X., and Huo, Y.: Effect of heating/cooling rate on the transformation temperatures in TiNiCu shape memory alloys. Thermochim. Acta 436, 153155 (2005).Google Scholar
Nurveren, K., Akdoğan, A., and Huang, W.M.: Evolution of transformation characteristics with heating/cooling rate in NiTi shape memory alloys. J. Mater. Process. Technol. 196, 129134 (2008).Google Scholar
Meng, Q., Yang, H., Liu, Y., and Nam, T.: Transformation intervals and elastic strain energies of B2-B19’ martensitic transformation of NiTi. Intermetallics 18, 24312434 (2010).CrossRefGoogle Scholar
Monteiro, P.C.C. Jr., Luciana, L.L., Netto, T.A., and Savi, M.A.: Experimental investigation of the influence of the heating rate in an SMA actuator performance. Sens. Actuat. A 199, 254259 (2013).CrossRefGoogle Scholar
Faulkner, M.G., Amaraj, J.J., and Bhattacharyya, A.: Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires. Smart Mater. Struct. 9, 632639 (2000).CrossRefGoogle Scholar
Kockar, B., Karaman, I., Kim, J.I., Chumlyakov, Y.I., Sharp, J., and Yu, C.J.M.: Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater. 56, 36303646 (2008).CrossRefGoogle Scholar
Karaca, H.E., Acar, E., Tobe, H., and Saghaian, S.M.: NiTiHf-based shape memory alloys. Mater. Sci. Technol. 30, 15301544 (2014).Google Scholar
Han, X.D., Chung, C.Y., Wang, R., Zhang, Z., Lai, J.K.L., and Yang, D.Z.: Martensitic transformation in Ti36.5Ni48.5Hf15 high temperature shape memory alloy. Mater. Trans. JIM 38, 842851 (1997).CrossRefGoogle Scholar
Atli, K.C., Karaman, I., Noebe, R.D., Garg, A., Chumlyakov, Y.I., and Kireeva, I.V.: Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation. Acta Mater. 59, 47474760 (2011).CrossRefGoogle Scholar
Qiu, S., Krishnan, V.B., Padula, S.A., Noebe, R.D., Brown, D.W., Clausen, B., and Vaidyanathan, R.: Measurement of the lattice plane strain and phase fraction evolution during heating and cooling in shape memory NiTi. Appl. Phys. Lett. 95, 141906 (2009).Google Scholar
Wollants, P., Roos, J.R., and Delaey, L.: Thermally and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci. 37, 227288 (1993).CrossRefGoogle Scholar
Bevis, J.A., Bottom, R., Duncan, J., Farhat, I., Forrest, M., Furniss, D., Gabbott, P., MacNaughtan, B., and Nazhat, S.: A practical introduction to differential scanning calorimetry. In Principles and Applications of Thermal Analysis, Gabbott, P., ed. (Blackwell Publishing, Oxford, UK, 2008); p. 9.Google Scholar
ASTM F2004: Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis.Google Scholar
Atli, K.C., Karaman, I., Noebe, R.D., Garg, A., Chumlyakov, Y.I., and Kireeva, I.V.: Improvement in the shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying. Metall. Mater. Trans. A 41A, 24852497 (2010).CrossRefGoogle Scholar
Atli, K.C., Karaman, I., and Noebe, R.D.: Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24.5Pd25 high temperature shape memory alloy. Mater. Sci. Eng. A 613, 250258 (2014).CrossRefGoogle Scholar