Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T12:26:45.867Z Has data issue: false hasContentIssue false

Controlled nanostructures and simultaneous passivation of black phosphorus (phosphorene) with Nafion

Published online by Cambridge University Press:  13 January 2020

Avneesh Kumar*
Affiliation:
International Centre for Materials Science, JNCASR, Bangalore 560064, India; and Institute of Organic Chemistry, TU Darmstadt, Darmstadt 64287, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Structural evolution induced and driven by a dual system and simultaneous passivation of phosphorene are reported. Different nano-objects of phosphorene or black phosphorus (BP) are obtained using a new method of exfoliation, in which solvent and an ionic polymer are combined to weaken the van der Waals forces and to scissor the nanosheets. Nanoribbons, nanorods, and nanoneedles are obtained under mechanical force and ambient conditions. Ionic polymer chains assist in curling the monolayer or few-layer nanosheet. Nafion is chosen to exfoliate the bulk BP and induce a morphological transition in BP nanosheets. The exfoliation of BP nanosheets results into thin and specific structures such as nanosheets/rods/needles. The nanosheets of phosphorene are covered and passivated simultaneously by the polymeric sheath that protects the nanosheets from degradation or oxidation and can be integrated with a device directly without any further coating.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Forsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).CrossRefGoogle ScholarPubMed
Wang, S., Scarabelli, D., Lu, L., Kuznetsova, Y.Y., Pfeiffer, L.N., West, K.W., Gardner, G.C., Manfra, M.J., Pelligrini, V., Wind, S.J., and Pinczuk, A.: Observation of Dirac bands in artificial graphene in small period nanopatterned GaAs quantum well. Nat. Nanotechnol. 13, 29 (2018).CrossRefGoogle Scholar
Radocea, A., Sun, T., Vo, T.H., Sinistkii, A., Aluru, N.R., and Lyding, J.W.: Solution-synthesized chevron graphene nanoribbons exfoliated onto H:Si(100). Nano Lett. 17, 170 (2017).CrossRefGoogle Scholar
Chhowalla, M., Jena, D., and Zhang, H.: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).CrossRefGoogle Scholar
Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., and Castro Neto, A.H.: Phosphorene: From theory to applications (Nature Reviews Materials, 2016); p. 16061.Google Scholar
Soleimanikahnoj, S. and Knezevic, I.: Tunable electronic properties of multilayer phosphorene and its nanoribbons. J. Comput. Electron. 16, 568 (2017).CrossRefGoogle Scholar
Kim, J., Baik, S.S., Ryu, S.H., Sohn, Y., Park, S., Park, B.G., Denlinger, J., Yi, Y., Choi, H.J., and Kim, K.S.: Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349 (2015).CrossRefGoogle Scholar
Wei, Q. and Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).CrossRefGoogle Scholar
Sresht, V., Padua, A.A.H., and Blankschtein, D.: Liquid-phase exfoliation of phosphorene: Design rules from molecular dynamics simulations. ACS Nano 9, 8255 (2015).CrossRefGoogle ScholarPubMed
Castillo Del Rio, A.E., Pellegrini, V., Sun, H., Buha, J., Dinh, D.A., Lago, E., Ansaldo, A., Capasso, A., Manna, L., and Bonaccorso, F.: Exfoliation of few-layer black phosphorus in low-boiling-point solvents and its applications in Li-ion batteries. Chem. Mater. 30, 506 (2018).CrossRefGoogle Scholar
Kang, J., Wells, S.A., Wood, J.D., Lee, J.H., Liu, X., Ryder, C.R., Zhu, J., Guest, J.R., Husko, C.A., and Hersam, M.C.: Stable aqueous dispersion of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. U. S. A. 113, 11688 (2016).CrossRefGoogle Scholar
Watts, M.C., Picco, F.S., Russel-Pavier, L., Cullen, P.L., Miller, T.S., Bartus, S.P., Payton, O.D., Skipper, N.T., Tileli, V., and Howard, C.A.: Production of phosphorene nanoribbons. Nature 568, 216 (2019).CrossRefGoogle ScholarPubMed
Mauritz, K.A., Moore, K.A., and Moore, R.B.: State of understanding nafion. Chem. Rev. 104, 4535 (2004).CrossRefGoogle ScholarPubMed
Tang, H.L. and Pan, M.: Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells. J. Phys. Chem. C 112, 30 (2008).Google Scholar
Wang, H., Lee, H.W., Deng, Y., Lu, Z., Hsu, P., Liu, Y., Lin, D., and Cui, Y.: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).CrossRefGoogle ScholarPubMed
Kumar, A.: Simultaneous passivation and encapsulation of black phosphorus nanosheets (phosphorene) by optically active polypeptide micelles for biosensors. ACS Appl. Nano Mater. 2, 2397 (2019).CrossRefGoogle Scholar
Niu, X., Li, Y., Zhang, Y., Li, Q., Zhou, Q., Zhao, J., and Wang, J.: Photo-oxidative degradation and protection mechanism of black phosphorus: Insights from ultrafast dynamics. J. Phys. Chem. Lett. 9, 5034 (2018).CrossRefGoogle ScholarPubMed
Zhang, J., Shin, S., and Lu, W.: Highly ambient-stable few-layer black phosphorene by pulsed laser exfoliation HEMM. Chem. Commun. 55, 2601 (2019).CrossRefGoogle ScholarPubMed
Mukhopadhya, T.K. and Datta, A.: Ordering any dynamics for the formation of two-dimensional molecular crystals on black phosphorene. J. Phys. Chem. C 121, 10210 (2017).CrossRefGoogle Scholar
Roche, E.J., Pineri, M., and Duplessix, R.: Phase separation in perfluorosulfonate ionomer membranes. J. Polym. Sci., Polym. Phys. Ed. 20, 107 (1982).CrossRefGoogle Scholar
Jakani, H.M., Lopez, I.Z., Mareau, V.H., and Gonon, L.: Optimization of hydrophilic/hydrophobic phase separation in sPEEK membranes by hydrothermal treatments. Phys. Chem. Chem. Phys. 19, 16013 (2017).CrossRefGoogle Scholar
Li, Y., Ma, F., and Wang, L.: Phosphorene oxide as a promising cathode material for sealed non-aqueous Li-oxygen batteries. J. Mater. Chem. A 6, 7815 (2018).CrossRefGoogle Scholar
Nilges, T.: Expressway to partially oxidized phosphorene. Proc. Natl. Acad. Sci. U. S. A. 115, 4311 (2018).CrossRefGoogle ScholarPubMed
Quhe, R., Li, Q., Zhang, Q., Wang, Y., Zhang, H., Li, J., Zhang, X., Chen, D., Liu, K., Ye, Y., Dai, L., Pan, F., Lei, M., and Lu, J.: Simulations of quantum transport in sub-5 nm monolayer phosphorene transistors. Phys. Rev. Appl. 10, 024022 (2018).CrossRefGoogle Scholar
Fotoohi, S.: Tunable rectification and negative differential resistance induced by asymmetric doping in phosphorene nanoribbon. Phys. Lett. A 383, 369 (2019).CrossRefGoogle Scholar
Guo, H., Lu, N., Dai, J., Wu, X., and Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118, 14051 (2014).CrossRefGoogle Scholar
Seifert, G. and Hernandez, E.R.: Theoretical predictions of phosphorus nanotubes. Chem. Phys. Lett. 318, 355 (2000).CrossRefGoogle Scholar
Pan, D., Wang, T.C., Wang, C., Guo, W., and Yao, Y.: Self-assembled chiral phosphorus nanotubes from phosphorene: A molecular dynamics study. RSC Adv. 7, 24647 (2017).CrossRefGoogle Scholar
Lazar, P., Otyepkova, E., Pykal, M., Cepe, K., and Otyepka, M.: Role of the puckered anisotropic surface in the surface and adsorption properties of black phosphorus. Nanoscale 10, 8979 (2018).CrossRefGoogle ScholarPubMed
Deng, Y., Luo, Z., Conrad, N.J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P.M., Lou, J., Xu, X., and Ye, P.D.: Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nanos 8, 8292 (2014).CrossRefGoogle Scholar
Edmond, M.T., Tadich, A., Carvalho, A., Ziletti, A., O'Donnell, K.M., Koenig, S.P., Coker, D.F., Ozyilmaz, B., Castro Neto, A.H., and Fuhrer, M.S.: Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 7, 14557 (2015).CrossRefGoogle Scholar
Hu, W., Lin, L., Zhang, R., Yang, C., and Yang, J.: Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J. Am. Chem. Soc. 139, 15429 (2017).CrossRefGoogle ScholarPubMed
Zhang, K., Jin, B., Park, C., Cho, Y., Song, X., Shi, X., Zhang, S., Kim, W., Zeng, H., and Park, J.H.: Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 10, 2001 (2019).CrossRefGoogle ScholarPubMed
Kou, L., Frauenheim, T., and Chen, C.: Phosphorene as a superior gas sensor: Selective adsorption and distinct IV response. J. Phys. Chem. Lett. 5, 2675 (2014).CrossRefGoogle ScholarPubMed
Kalantar-zadeh, K. and Zhen Ou, J.: Biosensors based on two-dimensional MoS2. ACS Sens. 1, 5 (2016).CrossRefGoogle Scholar
Zhang, M., Wu, Q., Zhang, F., Chen, L., Jin, X., Hu, Y., Zheng, Z., and Zhang, H.: Black-phosphorous-based pulsed lasers: 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7, 1970001 (2019).CrossRefGoogle Scholar
Zhou, Y., Zhang, M., Guo, Z., Miao, L., Han, S.T., Wang, Z., Zhang, X., Zhang, H., and Peng, Z.: Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 4, 997 (2017).CrossRefGoogle Scholar
Guo, Z., Chen, S., Wang, Z., Yang, Z., Liu, Z., Xu, F., Wang, Y., Yi, J., Liao, Y., Chu, L., Yu, P., and Feng, X.: Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29, 1703811 (2017).CrossRefGoogle ScholarPubMed
Zheng, J., Yang, Z., Chen, S., Liang, Z., Chen, X., Cao, R., Guo, Z., Wang, K., Zhang, Y., Ji, J., Zhang, M., Fan, D., and Zhang, H.: Black phosphorus based all-optical-signal-processing: Towards high performances and enhanced stability. ACS Photonics 4, 1466 (2017).CrossRefGoogle Scholar
Supplementary material: File

Kumar supplementary material

Figures S1-S2

Download Kumar supplementary material(File)
File 285 KB