Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T21:45:56.370Z Has data issue: false hasContentIssue false

Topology-induced effect in biomimetic propulsive wakes

Published online by Cambridge University Press:  24 July 2013

V. Raspa*
Affiliation:
Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR7636; ESPCI ParisTech; UPMC (Paris 6); Univ. Paris Diderot (Paris 7), 10, rue Vauquelin, F-75005 Paris, France
R. Godoy-Diana
Affiliation:
Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR7636; ESPCI ParisTech; UPMC (Paris 6); Univ. Paris Diderot (Paris 7), 10, rue Vauquelin, F-75005 Paris, France
B. Thiria
Affiliation:
Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR7636; ESPCI ParisTech; UPMC (Paris 6); Univ. Paris Diderot (Paris 7), 10, rue Vauquelin, F-75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

It is known that the wake pattern observed in a cross-section behind swimming or flying animals is typically characterized by the presence of periodical vortex shedding. However, depending on species, propulsive wakes can differ according to the spatial ordering of the main vortex structures. We conducted a very precise experiment to analyse the role of the topology of the wake in the generation of propulsion by comparing two prototypical cases in a quasi-two-dimensional view. One configuration is jellyfish-like, with symmetric shedding of vortex pairs, and the other is fish-like, with alternating shedding of counter-rotating vortices. Self-propulsion is achieved by the flapping motion of two identical pitching rigid foils, separated by a distance $d$. By keeping the momentum input unchanged, we compared both symmetric and asymmetric flapping modes. For the entire explored range of parameters, the symmetric jellyfish-like mode has shown to produce more thrust than the fish-like asymmetrical one. We show here that this difference is due to a pressure effect related to the ability of each wake to produce or not, strong fluctuations of transversal velocities in the near-wake region.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. J. & Grosenbaugh, M. A. 2005 Jet flow in steadily swimming adult squid. J. Expl Biol. 208 (6), 11251146.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Birch, J. M., Dickson, W. B. & Dickinson, M. H. 2004 Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Expl Biol. 207 (7), 10631072.CrossRefGoogle Scholar
Bohl, D. G. & Koochesfahani, M. M. 2009 MTV measurements of the vortical field in the wake of an aerofoil oscillating at high reduced frequency. J. Fluid Mech. 620, 6388.CrossRefGoogle Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
Dabiri, J. O., Colin, S. P., Costello, J. H. & Gharib, M. 2005 Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J. Expl Biol. 208 (7), 12571265.CrossRefGoogle ScholarPubMed
Ellington, C. P., Van Den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Fish, F. E. & Lauder, G. V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.CrossRefGoogle Scholar
Godoy-Diana, R., Aider, J. L. & Wesfreid, J. E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77, 016308.CrossRefGoogle ScholarPubMed
Hedenström, A., Rosén, M. & Spedding, G. R. 2006 Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. J. Royal Soc. Interface 3 (7), 263276.CrossRefGoogle Scholar
Joslin, R. D. 1998 Aircraft laminar flow control. Annu. Rev. Fluid Mech. 30 (1), 129.CrossRefGoogle Scholar
Kanso, E. & Newton, P. K. 2010 Locomotory advantages to flapping out of phase. Exp. Mechs. 50, 13671372.CrossRefGoogle Scholar
Katz, J. 2006 Aerodynamics of race cars. Annu. Rev. Fluid Mech. 38 (1), 2763.CrossRefGoogle Scholar
Krueger, P. 2005 An over-pressure correction to the slug model for vortex ring circulation. J. Fluid Mech. 545, 427443.CrossRefGoogle Scholar
Lighthill, M. J. 1960 Note on the swimming of slender fish.. J. Fluid Mech. 9, 305317.CrossRefGoogle Scholar
Müller, U., Heuvel, B., Stamhuis, E. & Videler, J. 1997 Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus risso). J. Expl Biol. 200 (22), 28932906.CrossRefGoogle Scholar
van Oudheusden, B. W., Scarano, F., Roosenboom, E. W. M., Casimiri, E. W. F. & Souverein, L. J. 2007 Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp. Fluids 43 (2), 153162.CrossRefGoogle Scholar
Poncet, P. 2002 Vanishing of mode b in the wake behind a rotationally oscillating circular cylinder. Phys. Fluids 14, 20212023.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. U.S.A. 108, 59645969.CrossRefGoogle ScholarPubMed
Raspa, V., Gaubert, C. & Thiria, B. 2012 Manipulating thrust wakes: a parallel with biomimetic propulsion. Europhys. Lett. 97, 44008.CrossRefGoogle Scholar
Ruiz, L., Whittlesey, R. & Dabiri, J. 2011 Vortex-enhanced propulsion. J. Fluid Mech. 668, 532.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Spalart, P. R. & McLean, J. D. 2011 Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. A 369 (1940), 15561569.CrossRefGoogle ScholarPubMed
Spedding, G. R. & Hedenström, A. 2009 PIV-based investigations of animal flight. Exp. Fluids 46 (5), 749763.CrossRefGoogle Scholar
Sutherland, K. R. & Madin, L. P. 2010 Comparative jet wake structure and swimming performance of salps. J. Expl Biol. 213 (17), 29672975.CrossRefGoogle ScholarPubMed
Thiria, B., Goujon-Durand, S. & Wesfreid, J. E. 2006 Wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123148.CrossRefGoogle Scholar
Tytell, E. D. 2007 Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies. Exp. Fluids 43 (5), 701712.CrossRefGoogle Scholar

Raspa et al. supplementary movie

Movie 1

Download Raspa et al. supplementary movie(Video)
Video 17.8 MB

Raspa et al. supplementary movie

Movie 2

Download Raspa et al. supplementary movie(Video)
Video 16.2 MB

Raspa et al. supplementary movie

Movie 3

Download Raspa et al. supplementary movie(Video)
Video 423.7 KB

Raspa et al. supplementary movie

Movie 4

Download Raspa et al. supplementary movie(Video)
Video 416.5 KB