Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T02:35:39.280Z Has data issue: false hasContentIssue false

Scaling behaviour in spherical shell rotating convection with fixed-flux thermal boundary conditions

Published online by Cambridge University Press:  21 February 2020

R. S. Long*
Affiliation:
EPSRC Centre for Doctoral Training in Fluid Dynamics, University of Leeds, LeedsLS2 9JT, UK
J. E. Mound
Affiliation:
School of Earth and Environment, University of Leeds, LeedsLS2 9JT, UK
C. J. Davies
Affiliation:
School of Earth and Environment, University of Leeds, LeedsLS2 9JT, UK
S. M. Tobias
Affiliation:
Department of Applied Mathematics, University of Leeds, LeedsLS2 9JT, UK
*
Email address for correspondence: [email protected]

Abstract

Bottom-heated convection in rotating spherical shells provides a simple analogue for many astrophysical and geophysical fluid systems. We construct a database of 74 three-dimensional numerical convection models to investigate the scaling behaviour of seven diagnostics over a range of Ekman $(10^{-6}\leqslant E\leqslant 10^{-3})$ and Rayleigh $(15\leqslant \widetilde{Ra}\leqslant 18\,000)$ numbers while using a Prandtl number of unity. Our configuration is chosen to model Earth’s core as defined by the fixed flux thermal boundary conditions, radius ratio $r_{i}/r_{o}$ of $0.35$ and a gravity profile that varies linearly with radius. The quantities of interest are the viscous and thermal boundary layer thickness, mean temperature gradient, mean interior temperature, Nusselt number, horizontal flow length scale, and Reynolds number. We find four parameter regimes characterised by different scaling behaviour. For $E\leqslant 10^{-4}$ and low $Ra$ the weakly nonlinear regime is characterised by a balance between viscous, Archimedean and Coriolis forces and the heat transfer is described by weakly nonlinear theory. At low $E$ and moderate $Ra$, the rapidly rotating regime sees inertia take over from viscosity in the global force balance. In this regime the heat transfer scaling has increasing exponent with decreasing Ekman number and shows no saturation to the diffusion free $Ra^{3/2}E^{2}$ scaling. At high $Ra$ and all $E$ the importance of the Coriolis force gradually decreases and all diagnostics continually change in the transitional regime before approaching the scaling behaviour of non-rotating convection.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Shamali, F. M., Heimpel, M. H. & Aurnou, J. M. 2004 Varying the spherical shell geometry in rotating thermal convection. Geophys. Astrophys. Fluid Dyn. 98 (2), 153169.CrossRefGoogle Scholar
Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J.-P. 2001 A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128 (1–4), 5174.CrossRefGoogle Scholar
Aubert, J., Gastine, T. & Fournier, A. 2017 Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 813, 558593.CrossRefGoogle Scholar
Aurnou, J. M. 2007 Planetary core dynamics and convective heat transfer scaling. Geophys. Astrophys. Fluid Dyn. 101 (5–6), 327345.CrossRefGoogle Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50 (1), 269279.Google ScholarPubMed
Breuer, M., Wessling, S., Schmalzl, J. & Hansen, U. 2004 Effect of inertia in Rayleigh–Bénard convection. Phys. Rev. E 69 (2), 026302.Google ScholarPubMed
Busse, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44 (3), 441460.CrossRefGoogle Scholar
Cardin, P. & Olson, P. 1994 Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82 (3–4), 235259.CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Cheng, J. S., Stellmach, S., Ribeiro, A., Grannan, A., King, E. M. & Aurnou, J. M. 2015 Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Intl 201 (1), 117.CrossRefGoogle Scholar
Cheng, J. S., Aurnou, J. M., Julien, K. & Kunnen, R. P. J. 2018 A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112 (4), 277300.CrossRefGoogle Scholar
Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Weber, G. H., Krishnan, H. et al. 2012 Visit: An end-user tool for visualizing and analyzing very large data. In High Performance Visualization–Enabling Extreme-Scale Scientific Insight, pp. 357372. Chapman & Hall.Google Scholar
Christensen, U. R. & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166, 97114.CrossRefGoogle Scholar
Christensen, U. R. & Wicht, J. 2015 Numerical dynamo simulations. In Treatise on Geophysics, 2nd edn vol. 8, pp. 245277.CrossRefGoogle Scholar
Currie, L. K. & Tobias, S. M. 2016 Mean flow generation in rotating an elastic two-dimensional convection. Phys. Fluids 28 (1), 017101.CrossRefGoogle Scholar
Davies, C. J., Gubbins, D. & Jimack, P. K. 2009 Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition. J. Fluid Mech. 641, 335358.CrossRefGoogle Scholar
Davies, C. J., Gubbins, D. & Jimack, P. K. 2011 Scalability of pseudospectral methods for geodynamo simulations. Concurrency Comput. Pract. Exp. 23 (1), 3856.CrossRefGoogle Scholar
Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.CrossRefGoogle Scholar
Gastine, T., Wicht, J. & Aubert, J. 2016 Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808, 690732.CrossRefGoogle Scholar
Gastine, T., Wicht, J. & Aurnou, J. M. 2015 Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech. 778, 721764.CrossRefGoogle Scholar
Gibbons, S. J., Gubbins, D. & Zhang, K. 2007 Convection in rotating spherical fluid shells with inhomogeneous heat flux at the outer boundary. Geophys. Astrophys. Fluid Dyn. 101 (5–6), 347370.CrossRefGoogle Scholar
Gillet, N. & Jones, C. A. 2006 The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech. 554, 343369.CrossRefGoogle Scholar
Gilman, P. A. 1977 Nonlinear dynamics of boussinesq convection in a deep rotating spherical shell-I. Geophys. Astrophys. Fluid Dyn. 8 (1), 93135.CrossRefGoogle Scholar
Glazier, J. A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against ultrahardthermal turbulence at very high Rayleigh numbers. Nature 398 (6725), 307.CrossRefGoogle Scholar
Goluskin, D. 2016 Internally Heated Convection and Rayleigh–Bénard Convection. Springer.CrossRefGoogle Scholar
Greenspan, H. P. G. 1968 The Theory of Rotating Fluids. CUP Archive.Google Scholar
Grooms, I. & Whitehead, J. P. 2014 Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection. Nonlinearity 28 (1), 2941.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Gubbins, D. 2003 Thermal core-mantle interactions: theory and observations. In Earth’s Core: Dynamics, Structure, Rotation (ed. Dehant, V., Creager, K., Karato, S. & Zatman, S.), pp. 162179. American Geophysical Union.Google Scholar
Guervilly, C., Cardin, P. & Schaeffer, N. 2019 Turbulent convective length scale in planetary cores. Nature 570 (7761), 368372.CrossRefGoogle ScholarPubMed
Hathaway, D. H. & Somerville, R. C. J. 1983 Three-dimensional simulations of convection in layers with tilted rotation vectors. J. Fluid Mech. 126, 7589.CrossRefGoogle Scholar
Holme, R. 2007 Large-scale flow in the core. Treatise Geophys. 8, 107130.CrossRefGoogle Scholar
Hunter, J. D. 2007 Matplotlib: A 2d graphics environment. Comput. Sci. Engng 9 (3), 9095.CrossRefGoogle Scholar
Jones, C. A. 2015 Thermal and compositional convection in the outer core. In Treatise on Geophysics, 2nd edn. (ed. Schubert, G.), vol. 8, pp. 115159. Elsevier.CrossRefGoogle Scholar
Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M. 2012a Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109 (25), 254503.CrossRefGoogle Scholar
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.CrossRefGoogle Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012b Statistical and physical balances in low rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392428.CrossRefGoogle Scholar
Kerr, R. M. & Herring, J. R. 2000 Prandtl number dependence of nusselt number in direct numerical simulations. J. Fluid Mech. 419, 325344.CrossRefGoogle Scholar
King, E. M., Stellmach, S. & Aurnou, J. M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.CrossRefGoogle Scholar
King, E. M., Stellmach, S. & Buffett, B. 2013 Scaling behaviour in Rayleigh–Bénard convection with and without rotation. J. Fluid Mech. 717, 449471.CrossRefGoogle Scholar
King, E. M. & Buffett, B. A. 2013 Flow speeds and length scales in geodynamo models: the role of viscosity. Earth Planet. Sci. Lett. 371, 156162.CrossRefGoogle Scholar
King, E. M., Soderlund, K. M., Christensen, U. R., Wicht, J. & Aurnou, J. M. 2010 Convective heat transfer in planetary dynamo models. Geochem. Geophys. Geosyst. 11 (6), Q0616.CrossRefGoogle Scholar
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457 (7227), 301304.CrossRefGoogle ScholarPubMed
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.CrossRefGoogle Scholar
Kundu, P. K. & Cohen, L. M. 1990 Fluid Mechanics, Academic.Google Scholar
Kunnen, R. P. J., Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R. & Lohse, D. 2016 Transition to geostrophic convection: the role of the boundary conditions. J. Fluid Mech. 799, 413432.CrossRefGoogle Scholar
Lam, S., Shang, X.-D., Zhou, S.-Q. & Xia, K.-Q. 2002 Prandtl number dependence of the viscous boundary layer and the reynolds numbers in Rayleigh–Bénard convection. Phys. Rev. E 65 (6), 066306.Google ScholarPubMed
Lhuillier, F., Hulot, G., Gallet, Y. & Schwaiger, T. 2019 Impact of inner-core size on the dipole field behaviour of numerical dynamo simulations. Geophys. J. Intl 218 (1), 179189.CrossRefGoogle Scholar
Liu, Y. & Ecke, R. E. 2011 Local temperature measurements in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 84 (1), 016311.Google ScholarPubMed
Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A., Busse, F., Christensen, U. R., Davies, C. J. et al. 2016 Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst. 17 (5), 15861607.CrossRefGoogle Scholar
Mound, J. E. & Davies, C. J. 2017 Heat transfer in rapidly rotating convection with heterogeneous thermal boundary conditions. J. Fluid Mech. 828, 601629.CrossRefGoogle Scholar
Oruba, L. & Dormy, E. 2014 Predictive scaling laws for spherical rotating dynamos. Geophys. J. Intl 198 (2), 828847.CrossRefGoogle Scholar
Pedlosky, J. 2013 Geophysical Fluid Dynamics. Springer Science & Business Media.Google Scholar
Plumley, M. & Julien, K. 2019 Scaling laws in Rayleigh–Bénard convection. In Earth and Space Science.Google Scholar
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2016 The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech. 803, 5171.CrossRefGoogle Scholar
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2017 Sensitivity of rapidly rotating Rayleigh–Bénard convection to Ekman pumping. Phys. Rev. Fluids 2 (9), 094801.CrossRefGoogle Scholar
Qiu, X.-L. & Xia, K.-Q. 1998a Spatial structure of the viscous boundary layer in turbulent convection. Phys. Rev. E 58 (5), 58165820.Google Scholar
Qiu, X.-L. & Xia, K.-Q. 1998b Viscous boundary layers at the sidewall of a convection cell. Phys. Rev. E 58 (1), 486491.Google Scholar
Rhines, P. B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (3), 417443.CrossRefGoogle Scholar
Sakuraba, A. & Roberts, P. H. 2009 Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat. Geosci. 2 (11), 802805.CrossRefGoogle Scholar
Schmitz, S. & Tilgner, A. 2010 Transitions in turbulent rotating Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 104 (5–6), 481489.CrossRefGoogle Scholar
Snedecor, G. W. C. & William, G1989 Statistical methods. Tech. Rep., Iowa State University Press.Google Scholar
Spiegel, E. A. 1971 Convection in stars I. Basic boussinesq convection. Annu. Rev. Astron. Astrophys. 9 (1), 323352.CrossRefGoogle Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113 (25), 254501.CrossRefGoogle ScholarPubMed
Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.CrossRefGoogle Scholar
Wicht, J. & Christensen, U. R. 2010 Torsional oscillations in dynamo simulations. Geophys. J. Intl 181 (3), 13671380.Google Scholar
Willis, A. P., Sreenivasan, B. & Gubbins, D. 2007 Thermal core–mantle interaction: exploring regimes for ‘locked’ dynamo action. Phys. Earth Planet. Inter. 165 (1–2), 8392.CrossRefGoogle Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., Duarte, L. D. V. & Reiners, A. 2015 Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells. Geophys. J. Intl 204 (2), 11201133.CrossRefGoogle Scholar