Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T20:45:00.562Z Has data issue: false hasContentIssue false

Path instabilities of streamlined bodies

Published online by Cambridge University Press:  07 February 2019

Thibault Guillet*
Affiliation:
LadHyX, UMR 7636, CNRS, Ecole polytechnique, 91128 Palaiseau, France PMMH, UMR 7646, CNRS, ESPCI, 75005 Paris, France
Martin Coux
Affiliation:
LadHyX, UMR 7636, CNRS, Ecole polytechnique, 91128 Palaiseau, France PMMH, UMR 7646, CNRS, ESPCI, 75005 Paris, France
David Quéré
Affiliation:
LadHyX, UMR 7636, CNRS, Ecole polytechnique, 91128 Palaiseau, France PMMH, UMR 7646, CNRS, ESPCI, 75005 Paris, France
Christophe Clanet
Affiliation:
LadHyX, UMR 7636, CNRS, Ecole polytechnique, 91128 Palaiseau, France PMMH, UMR 7646, CNRS, ESPCI, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

We study the trajectory and the maximum diving depth of floating axisymmetric streamlined bodies impacting water with a vertical velocity. Three different types of underwater trajectory can be observed. For a centre of mass of the projectile located close to its leading edge, the trajectory is either straight at low velocity or y-shaped at high velocity. When the centre of mass is far from the leading edge, the trajectory has a U-shape, independent of the initial velocity. We first characterize experimentally the aerodynamic properties of the projectile and then solve the equations of motion to recover the three types of trajectories. We finally discuss the transitions between the different regimes.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, N. J. & Walter, C. B. 1993 Maximum diving depths of cape gannets. The Condor 95, 734736.Google Scholar
Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.Google Scholar
Auguste, F., Fabre, D. & Magnaudet, J. 2010 Bifurcations in the wake of a thick circular disk. Theor. Comput. Fluid Dyn. 24, 305313.Google Scholar
Bergmann, R., Van Der Meer, D., Gekle, S., Van Der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.Google Scholar
Birkhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes, and Cavities. Academic.Google Scholar
Bodily, K. G., Carlson, S. J. & Truscott, T. T. 2014 The water entry of slender axisymmetric bodies. Phys. Fluids 26 (7), 072108.Google Scholar
Brierley, A. S. & Fernandes, P. G. 2001 Diving depths of northern gannets: acoustic observations of sula bassana from an autonomous underwater vehicle. The Auk 118 (2), 529534.Google Scholar
Chang, B., Croson, M., Straker, L., Gart, S., Dove, C., Gerwin, J. & Jung, S. 2016 How seabirds plunge-dive without injuries. Proc. Natl Acad. Sci. USA 113 (43), 1200612011.Google Scholar
Cohen, C., Darbois-Texier, B., Dupeux, G., Brunel, E., Quéré, D. & Clanet, C. 2014 The aerodynamic wall. Proc. R. Soc. Lond. A 470, 20130497.Google Scholar
Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.Google Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.Google Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.Google Scholar
Fernandes, P. C., Risso, F., Ern, P. & Magnaudet, J. 2007 Oscillatory motion and wake instability of freely rising axisymmetric bodies. J. Fluid Mech. 573, 479502.Google Scholar
Gaudet, S. 1998 Numerical simulation of circular disks entering the free surface of a fluid. Phys. Fluids 10, 24892499.Google Scholar
Gekle, S. & Gordillo, J. M. 2010 Generation and breakup of worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.Google Scholar
Gilbarg, D. & Anderson, R. A. 1948 Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water. J. Appl. Phys. 19, 127139.Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996a A hydrodynamic model of locomotion in the basilisk lizard. Nature 380 (6572), 340342.Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996b Vertical water entry of disks at low froude numbers. Phys. Fluids 8 (8), 20782083.Google Scholar
Hoerner, S. F. 1965 Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Hoerner Fluid Dynamics.Google Scholar
Hoerner, S. F. & Borst, H. V. 1985 Fluid-dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift. LA Hoerner.Google Scholar
Lee, M., Longoria, R. G. & Wilson, D. E. 1997 Cavity dynamics in high-speed water entry. Phys. Fluids 9 (3), 540550.Google Scholar
Mahadevan, L. 1996 Tumbling of a falling card. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 323, 729736.Google Scholar
Mansoor, M. M., Vakarelski, I. U., Marston, J. O., Truscott, T. T. & Thoroddsen, S. T. 2017 Stable-streamlined and helical cavities following the impact of Leidenfrost spheres. J. Fluid Mech. 823, 716754.Google Scholar
May, A. 1952 Vertical entry of missiles into water. J. Appl. Phys. 23, 13621372.Google Scholar
May, A.1975 Water entry and the cavity-running behavior of missiles. Tech. Rep. NAVSEA Hydroballistics Advisory Committee Silver Spring MD.Google Scholar
Prince, P. A., Huin, N. & Weimerskirch, H. 1994 Diving depths of albatrosses. Antarct. Sci. 6, 353354.Google Scholar
Truscott, T. T., Epps, B. P. & Belden, J. 2014 Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355378.Google Scholar
Vakarelski, I. U., Klaseboer, E., Jetly, A., Mansoor, M. M., Aguirre-Pablo, A. A., Chan, D. Y. C. & Thoroddsen, S. T. 2017 Self-determined shapes and velocities of giant near-zero drag gas cavities. Sci. Adv. 3, e1701558.Google Scholar
Von Karman, T.1929 The impact on seaplane floats during landing. NACA TN 321.Google Scholar
Willmarth, W. W., Hawk, N. E. & Harvey, R. L. 1964 Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids 7, 197208.Google Scholar
Worthington, A. M. & Cole, R. S. 1900 Impact with a liquid surface studied by the aid of instantaneous photography. Paper II. Phil. Trans. R. Soc. Lond. A 194, 175199.Google Scholar