Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T03:33:08.088Z Has data issue: false hasContentIssue false

Modelling of the turbulent burning velocity based on Lagrangian statistics of propagating surfaces

Published online by Cambridge University Press:  23 January 2020

Jiaping You
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering,Peking University, Beijing100871, PR China
Yue Yang*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering,Peking University, Beijing100871, PR China CAPT and BIC-ESAT, Peking University, Beijing100871, PR China
*
Email address for correspondence: [email protected]

Abstract

We propose a predictive model of the turbulent burning velocity $S_{T}$ in homogeneous isotropic turbulence (HIT) based on Lagrangian statistics of propagating surfaces. The propagating surfaces with a constant displacement speed are initially arranged on a plane, and they evolve in non-reacting HIT, behaving like the propagation of a planar premixed flame front. The universal constants in the model of $S_{T}$ characterize the enhancement of area growth of premixed flames by turbulence, and they are determined by Lagrangian statistics of propagating surfaces. The flame area is then modelled by the area of the propagating surfaces at a truncation time. This truncation time signals the statistical stationary state of the evolutionary geometry of the propagating surfaces, and it is modelled by an explicit expression using limiting conditions of very weak and strong turbulence. Another parameter in the model of $S_{T}$ characterizes the effect of fuel chemistry on $S_{T}$, and it is pre-determined by the very few available data points of $S_{T}$ from experiments or direct numerical simulation (DNS) in weak turbulence. The proposed model is validated using three DNS series of turbulent premixed flames with various fuels. The model prediction of $S_{T}$ generally agrees well with DNS in a wide range of premixed combustion regimes, and it captures the basic trends of $S_{T}$ in terms of the turbulence intensity, including the linear growth in weak turbulence and the ‘bending effect’ in strong turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspden, A., Bell, J., Day, M. & Egolfopoulos, F. 2017 Turbulence–flame interactions in lean premixed dodecane flames. Proc. Combust. Inst. 36, 20052016.CrossRefGoogle Scholar
Aspden, A. J., Day, M. S. & Bell, J. B. 2011 Turbulene–flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287320.CrossRefGoogle Scholar
Batchelor, G. K. 1952 The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. Lond. A 213, 349366.Google Scholar
Bell, J. B., Day, M. S. & Grcar, J. F. 2002 Numerical simulation of premixed turbulent methane combustion. Proc. Combust. Inst. 29, 19871993.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Grcar, J. F. & Lijewski, M. J. 2006 Active control for statistically stationary turbulent premixed flame simulations. Commun. Appl. Math. Comput. Sci. 1, 2951.CrossRefGoogle Scholar
Bell, J. B., Day, M. S. & Lijewski, M. J. 2013 Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner. Proc. Combust. Inst. 34, 11731182.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Shepherd, I. G., Johnson, M. R., Cheng, R. K., Grcar, J. F., Beckner, V. E. & Lijewski, M. J. 2005 Numerical simulation of a laboratory scale turbulent V-flame. Proc. Natl Acad. Sci. USA 102, 1000610011.CrossRefGoogle ScholarPubMed
Bobbitt, B., Lapointe, S. & Blanquart, G. 2016 Vorticity transformation in high Karlovitz number premixed flames. Phys. Fluids 28, 205101.Google Scholar
Bradley, D. 1992 How fast can we burn? Proc. Combust. Inst. 24, 247262.CrossRefGoogle Scholar
Bradley, D., Lawes, M., Liu, K. & Mansour, M. S. 2013 Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34, 15191526.CrossRefGoogle Scholar
Brown, P. N., Byrne, G. D. & Hindmarsh, A. C. 1989 VODE: a variable–coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 10381051.CrossRefGoogle Scholar
Candel, S. M. & Poinsot, T. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70, 115.CrossRefGoogle Scholar
Carroll, P. L. & Blanquart, G. 2013 A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114.CrossRefGoogle Scholar
Chakraborty, N. & Cant, R. S. 2005 Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids 17, 065108.Google Scholar
Chaudhuri, S. 2015 Life of flame particles embedded in premixed flames interacting with isotropic turbulence. Proc. Combust. Inst. 35, 13051312.CrossRefGoogle Scholar
Creta, F. & Matalon, M. 2011 Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225264.CrossRefGoogle Scholar
Damköhler, G. 1940 The effect of turbulence on the flame velocities in gas mixtures. Z. Elektrochem. Angew. Phys. Chem. 46, 601626.Google Scholar
Dave, H. L., Mohan, A. & Chaudhuri, S. 2018 Genesis and evolution of premixed flames in turbulence. Combust. Flame 196, 386399.CrossRefGoogle Scholar
Davis, S. G. & Searby, G. 2002 The use of counterflow flames for the evaluation of burning velocities and stretch effects in hydrogen/air mixtures. Combust. Sci. Technol. 174, 93110.CrossRefGoogle Scholar
Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V. & Cheng, R. K. 2015 A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: II. Hydrogen flames. Combust. Flame 162, 21482165.CrossRefGoogle Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 71257159.CrossRefGoogle Scholar
Driscoll, J. F. 2008 Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91134.CrossRefGoogle Scholar
Fogla, N., Creta, F. & Matalon, M. 2015 Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162, 27582777.CrossRefGoogle Scholar
Fureby, C. 2005 A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593601.CrossRefGoogle Scholar
Girimaji, S. S. 1991 Asymptotic behavior of curvature of surface elements in isotropic turbulence. Phys. Fluids A 3, 17721777.CrossRefGoogle Scholar
Girimaji, S. S. & Pope, S. B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.CrossRefGoogle Scholar
Girimaji, S. S. & Pope, S. B. 1992 Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247277.CrossRefGoogle Scholar
Goto, S. & Kida, S. 2007 Reynolds-number dependence of line and surface stretching in turbulence: folding effects. J. Fluid Mech. 586, 5981.CrossRefGoogle Scholar
Gouldin, F. C. 1987 An application of fractals to modeling premixed turbulent flames. Combust. Flame 68, 249266.CrossRefGoogle Scholar
Hamlington, P. E., Darragh, R., Briner, C. A., Towery, C. A. Z., Taylor, B. D. & Poludnenko, A. Y. 2017 Lagrangian analysis of high-speed turbulent premixed reacting flows: thermochemical trajectories in hydrogen-air flames. Combust. Flame 186, 193207.CrossRefGoogle Scholar
Hawkes, E. R. & Chen, J. H. 2006 Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations. Combust. Flame 144, 112125.CrossRefGoogle Scholar
He, G., Jin, G. & Yang, Y. 2017 Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 5171.CrossRefGoogle Scholar
Herrmann, M., Blanquart, G. & Raman, V. 2006 Flux corrected finite volume scheme for preserving scalar boundedness in reacting large-eddy simulations. AIAA J. 44, 28792886.CrossRefGoogle Scholar
Karpov, V. P. & Severin, E. S. 1978 Turbulent burn-up rates of propane-air flames determined in a bomb with agitators. Combust. Explos. Shock Waves 14, 158163.CrossRefGoogle Scholar
Karpov, V. P. & Severin, E. S. 1980 Effects of molecular-transport coefficients on the rate of turbulent combustion. Combust. Explos. Shock Waves 16, 4551.CrossRefGoogle Scholar
Kawanabe, H., Shioji, M., Tsunooka, T. & Ali, Y. 1998 CFD simulation for predicting combustion and pollutant formation in a homogeneous-charge spark-ignition engine. In COMODIA98 Tokyo: JSME, pp. 287292.Google Scholar
Kee, R. J., Grcar, J., Smooke, M. & Miller, J. A.1985 PREMIX: a FORTRAN program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. SAND85-8240, Sandia National Laboratories.Google Scholar
Kee, R. J., Rupley, F. M., Meeks, E. & Miller, J. A.1996 CHEMKIN-III: A fortran chemical kinetic package for the analysis of gas-phase chemical and plasma kinetics. Tech. Rep. SAND96-8216, Sandia National Laboratories.CrossRefGoogle Scholar
Kerstein, A. R. 1988 Similar derivation of Yakhot’s turbulent premixed flame speed formula. Combust. Sci. Technol. 60, 163165.CrossRefGoogle Scholar
Klimov, A. M. 1983 Premixed turbulent flames–interplay of hydrodynamic and chemical phenomena. Prog. Astronaut. Aeronaut. 88, 133.Google Scholar
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537566.CrossRefGoogle Scholar
Lee, D. & Huh, K. Y. 2010 Statistically steady incompressible DNS to validate a new correlation for turbulent burning velocity in turbulent premixed combustion. Flow Turbul. Combust. 84, 339356.CrossRefGoogle Scholar
Lee, D. & Huh, K. Y. 2012 Validation of analytical expressions for turbulent burning velocity in stagnating and freely propagating turbulent premixed flames. Combust. Flame 159, 15761591.CrossRefGoogle Scholar
Lipatnikov, A. 2012 Fundamentals of Premixed Turbulent Combustion. CRC Press.CrossRefGoogle Scholar
Lipatnikov, A. N. & Chomiak, J. 2002 Turbulent flame speed and thickness: phenomenology, evaluation and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 174.CrossRefGoogle Scholar
Lu, Z. & Yang, Y.2019 Modeling pressure effects on the turbulent burning velocity for lean hydrogen/air premixed combustion. Preprint, arXiv:1911.10815.Google Scholar
Marble, F. E. & Broadwell, J. E.1977 The coherent flame model for turbulent chemical reactions. TRW Report.CrossRefGoogle Scholar
Matalon, M. 2009 Flame dynamics. Proc. Combust. Inst. 32, 5782.CrossRefGoogle Scholar
Minamoto, Y., Yenerdag, B. & Tanahashi, M. 2018 Morphology and structure of hydrogen-air turbulent premixed flames. Combust. Flame 192, 369383.CrossRefGoogle Scholar
Nivarti, G. V. & Cant, R. S. 2017 Direct numerical simulation of the bending effect in turbulent premixed flames. Proc. Combust. Inst. 36, 19031910.CrossRefGoogle Scholar
Nivarti, G. V., Cant, R. S. & Hochgreb, S. 2019 Reconciling turbulent burning velocity with flame surface area in small-scale turbulence. J. Fluid Mech. 858, R4.CrossRefGoogle Scholar
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Pierce, C. D.2001 Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Stanford University.Google Scholar
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26, 445469.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Sabelnikov, V. A. & Lipatnikov, A. N. 2017 Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Annu. Rev. Fluid Mech. 49, 91117.CrossRefGoogle Scholar
Savard, B. & Blanquart, G. 2015 Broken reaction zone and differential diffusion effects in high Karlovitz n‐C7H16 premixed turbulent flames. Combust. Flame 162, 20202033.CrossRefGoogle Scholar
Savard, B., Bobbitt, B. & Blanquart, G. 2015 Structure of a high Karlovitz n‐C7H16 premixed turbulent flame. Proc. Combust. Inst. 35, 13771384.CrossRefGoogle Scholar
Skiba, A. W., Wabel, T. M., Carter, C. D., Hammack, S. D., Temme, J. E. & Driscoll, J. F. 2018 Premixed flames subjected to extreme levels of turbulence part I: flame structure and a new measured regime diagram. Combust. Flame 189, 407432.CrossRefGoogle Scholar
Steinberg, A. M., Coriton, B. & Frank, J. H. 2015 Influence of combustion on principal strain-rate transport in turbulent premixed flames. Proc. Combust. Inst. 35, 12871294.CrossRefGoogle Scholar
Tamadonfar, P. & Gülder, Ö. L. 2015 Experimental investigation of the inner structure of premixed turbulent methane/air flames in the thin reaction zones regime. Combust. Flame 162, 115128.CrossRefGoogle Scholar
Tanahashi, M., Fujimura, M. & Miyauchi, T. 2000 Coherent fine-scale eddies in turbulent premixed flames. Proc. Combust. Inst. 28, 529535.CrossRefGoogle Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196212.Google Scholar
Thiesset, F., Halter, F., Bariki, C., Lapeyre, C., Chauveau, C., Gökalp, I., Selle, L. & Poinsot, T. 2017 Isolating strain and curvature effects in premixed flame/vortex interactions. J. Fluid Mech. 831, 618654.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Troiani, G., Creta, F. & Matalon, M. 2015 Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35, 14511459.CrossRefGoogle Scholar
Trouvé, A. & Poinsot, T. 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 131.CrossRefGoogle Scholar
Uranakara, H. A., Chaudhuri, S., Dave, H. L., Arias, P. G. & Im, H. G. 2016 A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 163, 220240.CrossRefGoogle Scholar
Venkateswaran, P., Marshall, A. D., Seitzman, J. M. & Lieuwen, T. C. 2014 Turbulent consumption speeds of high hydrogen content fuels from 1–20 atm. Trans. ASME J. Engng Gas Turbines Power 136, 011504.CrossRefGoogle Scholar
Verma, S. & Lipatnikov, A. N. 2016 Does sensitivity of measured scaling exponents for turbulent burning velocity to flame configuration prove lack of generality of notion of turbulent burning velocity? Combust. Flame 173, 7788.CrossRefGoogle Scholar
Veynante, D. & Vervisch, L. 2002 Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193266.CrossRefGoogle Scholar
Veynante, R. K. D. & Mebeveau, C. 2002 A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst. 29, 21052111.Google Scholar
Wabel, T. M., Skiba, A. W. & Driscoll, J. F. 2017 Turbulent burning velocity measurements: extended to extreme levels of turbulence. Proc. Combust. Inst. 36, 18011808.CrossRefGoogle Scholar
Wang, H., Hawkes, E. R., Chen, J. H., Zhou, B., Li, Z. S. & Aldén, M. 2017a Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511536.CrossRefGoogle Scholar
Wang, Z., Magi, V. & Abraham, J. 2017b Turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions. Combust. Flame 180, 5362.CrossRefGoogle Scholar
Won, S. H., Windom, B., Jiang, B. & Ju, Y. 2014 The role of low temperature fuel chemistry on turbulent flame propagation. Combust. Flame 161, 475483.CrossRefGoogle Scholar
Yakhot, V. 1988 Propagation velocity of premixed turbulent flames. Combust. Sci. Technol 60, 191214.CrossRefGoogle Scholar
Yang, Y., Pullin, D. I. & Bermejo-Moreno, I. 2010 Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. J. Fluid Mech. 654, 233270.CrossRefGoogle Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142.CrossRefGoogle Scholar
Yu, R., Bai, X. S. & Lipatnikov, A. N. 2015 A direct numerical simulation study of interface propagation in homogeneous turbulence. J. Fluid Mech. 772, 127164.CrossRefGoogle Scholar
Zheng, T., You, J. & Yang, Y. 2017 Principal curvatures and area ratio of propagating surfaces in isotropic turbulence. Phys. Rev. Fluids 2, 103201.CrossRefGoogle Scholar
Zhou, H., You, J., Xiong, S., Yang, Y., Thévenin, D. & Chen, S. 2019 Interactions between the premixed flame front and the three-dimensional Taylor–Green vortex. Proc. Combust. Inst. 37, 24612468.CrossRefGoogle Scholar
Zimont, V. L. & Mesheriakov, E. A. 1988 A model of combustion of partially premixed gases. In Structure of Gas Flames. Proceedings of International Colloquium. Part II, pp. 3543 (in Russian) ITPM.Google Scholar
Supplementary material: File

You and Yang supplementary material

You and Yang supplementary material

Download You and Yang supplementary material(File)
File 423.5 KB