Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T22:10:20.824Z Has data issue: true hasContentIssue false

Emptying filling boxes – free turbulent versus laminar porous media plumes

Published online by Cambridge University Press:  22 March 2017

Ali Moradi
Affiliation:
Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
M. R. Flynn*
Affiliation:
Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
*
Email address for correspondence: [email protected]

Abstract

We examine the transient evolution of a negatively buoyant, laminar plume in an emptying filling box containing a uniform porous medium. In the long time limit, $\unicode[STIX]{x1D70F}\rightarrow \infty$ , the box is partitioned into two uniform layers of different densities. However, the approach towards steady state is characterized by a lower contaminated layer that is continuously stratified. The presence of this continuous stratification poses non-trivial analytical challenges; we nonetheless demonstrate that it is possible to derive meaningful bounds on the range of possible solutions, particularly in the limit of large $\unicode[STIX]{x1D707}$ , where $\unicode[STIX]{x1D707}$ represents the ratio of the draining to filling time scales. The validity of our approach is confirmed by drawing comparisons against the free turbulent plume case where, unlike with porous media plumes, an analytical solution that accounts for the time-variable continuous stratification of the lower layer is available (Baines & Turner, J. Fluid Mech., vol. 37, 1969, pp. 51–80; Germeles, J. Fluid Mech., vol. 71, 1975, pp. 601–623). A separate component of our study considers time-variable forcing where the laminar plume source strength changes abruptly with time. When the source is turned on and off with a half-period, $\unicode[STIX]{x0394}\unicode[STIX]{x1D70F}$ , the depth and reduced gravity of the contaminated layer oscillate between two extrema after the first few cycles. Different behaviour is seen when the source is merely turned up or down. For instance, a change of the source reduced gravity leads to a permanent change of interface depth, which is a qualitative point of difference from the free turbulent plume case.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, W. D. 1983 Direct measurement of volume flux of a plume. J. Fluid Mech. 132, 247256.Google Scholar
Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech. 37, 5180.Google Scholar
Bolster, D. T. & Caulfield, C. P. 2008 Transients in natural ventilation – a time-periodically-varying source. Build. Serv. Engng Res. Technol. 29 (2), 119135.Google Scholar
Bolster, D. T., Maillard, A. & Linden, P. F. 2008 The response of natural displacement ventilation to time-varying heat sources. Energy Build. 40 (12), 20992110.CrossRefGoogle Scholar
Carroll, K. C., Oostrom, M., Truex, M. J., Rohay, V. J. & Brusseau, M. L. 2012 Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality. J. Contam. Hydrol. 128 (1), 7182.CrossRefGoogle ScholarPubMed
Caulfield, C. P. & Woods, A. W. 2002 The mixing in a room by a localized finite-mass-flux source of buoyancy. J. Fluid Mech. 471, 3350.CrossRefGoogle Scholar
Chen, Z., Liu, J., Elsworth, D., Connell, L. & Pan, Z. 2009 Investigation of CO2 injection induced coal–gas interactions. In 43rd US Rock Mechanics Symposium and 4th US–Canada Rock Mechanics Symposium, American Rock Mechanics Association.Google Scholar
Delgado, J. M. P. Q. 2007 Longitudinal and transverse dispersion in porous media. Chem. Engng Res. Des. 85 (9), 12451252.CrossRefGoogle Scholar
Flynn, M. R. & Caulfield, C. P. 2006 Natural ventilation in interconnected chambers. J. Fluid Mech. 564, 139158.CrossRefGoogle Scholar
Germeles, A. E. 1975 Forced plumes and mixing of liquids in tanks. J. Fluid Mech. 71, 601623.Google Scholar
Holford, J. M. & Hunt, G. R. 2000 Multiple steady states in natural ventilation. In Proceedings of 5th International Symposium on Stratified Flows, Vancouver (ed. Lawrence, G. A., Pieters, R. & Yonomitsu, N.), pp. 661666. IAHR.Google Scholar
Kaye, N. B., Flynn, M. R., Cook, M. J. & Ji, Y. 2010 The role of diffusion on the interface thickness in a ventilated filling box. J. Fluid Mech. 652, 195205.Google Scholar
Kaye, N. B. & Hunt, G. R. 2004 Time-dependent flows in an emptying filling box. J. Fluid Mech. 520, 135156.Google Scholar
Kaye, N. B. & Hunt, G. R. 2007 Smoke filling time for a room due to a small fire: the effect of ceiling height to floor width aspect ratio. Fire Safety J. 42 (5), 329339.Google Scholar
Kaye, N. B., Ji, Y. & Cook, M. J. 2009 Numerical simulation of transient flow development in a naturally ventilated room. Build. Environ. 44 (5), 889897.CrossRefGoogle Scholar
Lin, Y. J. P. & Linden, P. F. 2002 Buoyancy-driven ventilation between two chambers. J. Fluid Mech. 463, 293312.CrossRefGoogle Scholar
Linden, P. F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31 (1), 201238.Google Scholar
Linden, P. F., Lane-Serff, G. F. & Smeed, D. A. 1990 Emptying filling boxes: the fluid mechanics of natural ventilation. J. Fluid Mech. 212, 309335.Google Scholar
MacMinn, C. W., Neufeld, J. A., Hesse, M. A. & Huppert, H. E. 2012 Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res. 48 (11), W11516.Google Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234 (1196), 123.Google Scholar
Nabi, S. & Flynn, M. R. 2013 The hydraulics of exchange flow between adjacent confined building zones. Build. Environ. 59, 7690.Google Scholar
Neufeld, J. A., Vella, D., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 1. A localized sink. J. Fluid Mech. 666, 391413.Google Scholar
Oostrom, M., Rockhold, M. L., Thorne, P. D., Truex, M. J., Last, G. V. & Rohay, V. J 2007 Carbon tetrachloride flow and transport in the subsurface of the 216-Z-9 trench at the Hanford site. Vadose Zone J. 6 (4), 971984.Google Scholar
Roes, M. A., Bolster, D. T. & Flynn, M. R. 2014 Buoyant convection from a discrete source in a leaky porous medium. J. Fluid Mech. 755, 204229.CrossRefGoogle Scholar
Sahu, C. K. & Flynn, M. R. 2015 Filling box flows in porous media. J. Fluid Mech. 782, 455478.Google Scholar
Sahu, C. K. & Flynn, M. R. 2016 Filling box flows in an axisymmetric porous medium. Trans. Porous Med. 112 (3), 619635.Google Scholar
Todd, D. K. 1980 Groundwater Hydrology, 2nd edn. Wiley.Google Scholar
Vauquelin, O. 2015 Oscillatory behaviour in an emptying–filling box. J. Fluid Mech. 781, 712726.CrossRefGoogle Scholar
Wooding, R. A. 1963 Convection in a saturated porous medium at large Rayleigh number or Péclet number. J. Fluid Mech. 15 (04), 527544.CrossRefGoogle Scholar
Woods, A. W. 2010 Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42, 391412.Google Scholar
Worster, M. G. & Huppert, H. E. 1983 Time-dependent density profiles in a filling box. J. Fluid Mech. 132, 457466.Google Scholar
Xu, J. Q. 2008 Modeling unsteady-state gravity-driven flow in porous media. J. Petrol. Sci. Engng 62 (3), 8086.Google Scholar