Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T10:17:46.911Z Has data issue: false hasContentIssue false

Dual role of friction in granular flows: attenuation versus enhancement of instabilities

Published online by Cambridge University Press:  24 July 2013

Peter P. Mitrano
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
Steven R. Dahl
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
Andrew M. Hilger
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
Christopher J. Ewasko
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
Christine M. Hrenya*
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
*
Email address for correspondence: [email protected]

Abstract

Flow instabilities driven by the dissipative nature of particle–particle interactions have been well documented in granular flows. The bulk of previous studies on such instabilities have considered the impact of inelastic dissipation only and shown that instabilities are enhanced with increased dissipation. The impact of frictional dissipation on the stability of grains in a homogeneous cooling system is studied in this work using molecular dynamics (MD) simulations and kinetic-theory-based predictions. Surprisingly, both MD simulations and theory indicate that high levels of friction actually attenuate instabilities relative to the frictionless case, whereas moderate levels enhance instabilities compared to frictionless systems, as expected. The mechanism responsible for this behaviour is identified as the coupling between rotational and translational motion. These results have implications not only for granular materials, but also more generally to flows with dissipative interactions between constituent particles – cohesive systems with agglomeration, multiphase flows with viscous dissipation, etc.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M. & Nott, P. R. 1997 The influence of friction on the stability of unbounded granular shear flow. J. Fluid Mech. 343, 267301.CrossRefGoogle Scholar
Brey, J. J., Ruiz-Montero, M. J. & Cubero, D. 1999 Origin of density clustering in a freely evolving granular gas. Phys. Rev. E 60 (3), 31503157.CrossRefGoogle Scholar
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 1998 Instability and spatial correlations in a dilute granular gas. Phys. Fluids 10 (11), 29762982.CrossRefGoogle Scholar
Brilliantov, N., Saluena, C., Schwager, T. & Pöschel, T. 2004 Transient structures in a granular gas. Phys. Rev. Lett. 93 (13), 134301.CrossRefGoogle Scholar
Brito, R. & Ernst, M. 1998 Extension of Haff’s cooling law in granular flows. Europhys. Lett. 43, 497502.CrossRefGoogle Scholar
Cafiero, R., Luding, S & Hermann, H. J. 2002 Rotationally driven gas of inelastic rough spheres. Europhys. Lett. 60, 854860.CrossRefGoogle Scholar
Ciamarra, M. P., Coniglio, A. & Nicodemi, M. 2005 Shear instabilities in granular mixtures. Phys. Rev. Lett. 94 (18), 188001.CrossRefGoogle ScholarPubMed
Conway, S. L., Shinbrot, T. & Glasser, B. J. 2004 A Taylor vortex analogy in granular flows. Nature 431 (7007), 433437.CrossRefGoogle Scholar
Fan, L.-S. & Zhu, C. 2005 Principles of Gas–Solid Flows. Cambridge University Press.Google Scholar
Garzó, V. 2005 Instabilities in a free granular fluid described by the Enskog equation. Phys. Rev. E 72, 021106.CrossRefGoogle Scholar
Garzó, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59 (5), 58955911.CrossRefGoogle ScholarPubMed
Gidaspow, D. 1994 Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions with Applications. Academic Press.Google Scholar
Goldfarb, D. J., Glasser, B. J. & Shinbrot, T. 2002 Shear instabilities in granular flows. Nature 415 (6869), 302305.CrossRefGoogle ScholarPubMed
Goldhirsch, I., Tan, M. L. & Zanetti, G. 1993 A molecular dynamical study of granular fluids I: the unforced granular gas in two dimensions. J. Sci. Comput. 8 (1), 140.CrossRefGoogle Scholar
Goldhirsch, I. & Zanetti, G. 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70 (11), 16191622.CrossRefGoogle ScholarPubMed
Goldshtein, A. & Shapiro, M. 1995 Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282 (1), 75114.CrossRefGoogle Scholar
Hoomans, B. P. B., Kuipers, J. A. M., Mohd Salleh, M. A., Stein, M. & Seville, J. P. K. 2001 Experimental validation of granular dynamics simulations of gas-fluidised beds with homogenous in-flow conditions using positron emission particle tracking. Powder Technol. 116 (2–3), 166177.CrossRefGoogle Scholar
Hopkins, M. A. & Louge, M. Y. 1991 Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 4757.CrossRefGoogle Scholar
Huthmann, M. & Zippelius, A. 1997 Dynamics of inelastically colliding rough spheres: relaxation of translational and rotational energy. Phys. Rev. E 56, R6275R6278.CrossRefGoogle Scholar
Immer, C., Metzger, P., Nick, A. & Horan, R. 2011 Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III. Icarus 211 (2), 10891102.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Kudrolli, A., Wolpert, M. & Gollub, J. P. 1997 Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78 (7), 13831386.CrossRefGoogle Scholar
Louge, M. Y. & Adams, M. E. 2002 Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E 65 (2), 021303.CrossRefGoogle Scholar
Luding, S. & Herrmann, H. J. 1999 Cluster-growth in freely cooling granular media. Chaos 9, 673688.CrossRefGoogle ScholarPubMed
Majidi, C., Groff, R. E., Maeno, Y., Schubert, B., Baek, S., Bush, B., Maboudian, R., Gravish, N., Wilkinson, M., Autumn, K. & Fearing, R. S. 2006 High friction from a stiff polymer using microfibre arrays. Phys. Rev. Lett. 97 (7), 076103.CrossRefGoogle Scholar
McNamara, S. & Luding, S. 1998 Energy nonequipartition in systems of inelastic, rough spheres. Phys. Rev. E 58 (2), 22472250.CrossRefGoogle Scholar
Mitrano, P. P., Dahl, S. R., Cromer, D. J., Pacella, M. S. & Hrenya, C. M. 2011 Instabilities in the homogeneous cooling of a granular gas: a quantitative assessment of kinetic-theory predictions. Phys. Fluids 23, 093303.CrossRefGoogle Scholar
Mitrano, P. P., Garzó, V., Hilger, A. M., Ewasko, C. J. & Hrenya, C. M. 2012 Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Phys. Rev. E 85 (4), 041303.CrossRefGoogle ScholarPubMed
Petzschmann, O., Schwarz, U., Spahn, F., Grebogi, C. & Kurths, J. 1999 Length scales of clustering in granular gases. Phys. Rev. Lett. 82 (24), 48194822.CrossRefGoogle Scholar
Phani, A., Lope, T. & Scoenau, G. 2010 Physical and frictional properties of non-treated and steam exploded barley, canola, oat and wheat straw grinds. Powder Technol. 201 (3), 230241.Google Scholar
Royer, J. R., Evans, D. J., Oyarte, L., Guo, Q., Kapit, E., Möbius, M. E., Waitukaitis, S. R. & Jaeger, H. M. 2009 High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459 (7250), 11101113.CrossRefGoogle ScholarPubMed
Santos, A., Kremer, G. M. & Garzó, V. 2010 Energy production rates in fluid mixtures of inelastic rough hard spheres. Prog. Theor. Phys. Suppl. 184, 3148.CrossRefGoogle Scholar
Schallert, R. & Levy, E. 2000 Effect of a combination of two elbows on particle roping in pneumatic conveying. Powder Technol. 107 (3), 226233.CrossRefGoogle Scholar
Shinbrot, T., Alexander, A. & Muzzio, F. J. 1999 Spontaneous chaotic granular mixing. Nature 397 (6721), 675678.CrossRefGoogle Scholar
Soto, R., Mareschal, M. & Mansour, M. M. 2000 Nonlinear analysis of the shearing instability in granular gases. Phys. Rev. E 62 (3), 38363842.CrossRefGoogle ScholarPubMed
Yilmaz, A. 1997 Roping phenomena in lean phase pneumatic conveying. PhD thesis, Lehigh University, Bethlehem, PA.Google Scholar
Yilmaz, A. & Levy, E. K. 2001 Formation and dispersion of ropes in pneumatic conveying. Powder Technol. 114 (1), 168185.CrossRefGoogle Scholar