Hostname: page-component-5f745c7db-f9j5r Total loading time: 0 Render date: 2025-01-06T22:19:26.309Z Has data issue: true hasContentIssue false

The discharge plume parameter $\unicode[STIX]{x1D6E4}_{d}$ and its implications for an emptying–filling box

Published online by Cambridge University Press:  16 March 2017

O. Vauquelin*
Affiliation:
Aix-Marseille Université, Laboratoire IUSTI, UMR CNRS 7343, 5 rue Enrico Fermi, 13 453 Marseille CEDEX 13, France
E. M. Koutaiba
Affiliation:
Aix-Marseille Université, Laboratoire IUSTI, UMR CNRS 7343, 5 rue Enrico Fermi, 13 453 Marseille CEDEX 13, France Centre Scientifique et Technique du Bâtiment, 84 avenue Jean Jaurès, 77 447 Marne-la-Vallée, France
E. Blanchard
Affiliation:
Centre Scientifique et Technique du Bâtiment, 84 avenue Jean Jaurès, 77 447 Marne-la-Vallée, France
P. Fromy
Affiliation:
Centre Scientifique et Technique du Bâtiment, 84 avenue Jean Jaurès, 77 447 Marne-la-Vallée, France
*
Email address for correspondence: [email protected]

Abstract

The natural ventilation flow driven by an internal buoyant plume in a box involving an upper opening (vent) located at the ceiling (for the outflow) and a large lower opening at the floor (for the inflow) is examined theoretically in a general non-Boussinesq case. Analytical solutions of this emptying–filling box problem allow the characteristics of the flow at the vent to be determined. From these characteristics, a non-dimensional parameter $\unicode[STIX]{x1D6E4}_{d}$ (called the discharge plume parameter) is expressed. This parameter characterizes the initial balance of volume, buoyancy and momentum fluxes in the plume-like flow that forms above the vent. We then note that the value of $\unicode[STIX]{x1D6E4}_{d}$ allows the buoyant fluid layer depth in the box to be estimated, which is a new and interesting result for natural ventilation problems. Following previous experimental results, the decrease of the vent discharge coefficient $C_{d}$ when $\unicode[STIX]{x1D6E4}_{d}$ increases is discussed and a theoretical model based on plume necking is proposed. The emptying–filling box model is then extended for a variable $C_{d}$ (depending on $\unicode[STIX]{x1D6E4}_{d}$ ). Even though the discharge coefficient may be markedly reduced at high values of $\unicode[STIX]{x1D6E4}_{d}$ , our results show that this only affects transients and the steady state of an emptying–filling box for relatively thin buoyant fluid layers.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech. 37, 5180.CrossRefGoogle Scholar
Candelier, F. & Vauquelin, O. 2012 Matched asymptotic solutions for turbulent plumes. J. Fluid Mech. 699, 489499.CrossRefGoogle Scholar
Carlotti, P. & Hunt, G. R. 2017 An entrainment model for lazy turbulent plumes. J. Fluid Mech. 811, 682700.CrossRefGoogle Scholar
Coffey, C. J. & Hunt, G. R. 2010 The unidirectional emptying box. J. Fluid Mech. 660, 456474.CrossRefGoogle Scholar
Coomaraswamy, I. A. & Caulfield, C. P. 2011 Time-dependent ventilation flows driven by opposing wind and buoyancy. J. Fluid Mech. 672, 3359.CrossRefGoogle Scholar
Fanneløp, T. K. & Webber, D. M. 2003 On buoyant plumes rising from area sources in a calm environment. J. Fluid Mech. 497, 319334.CrossRefGoogle Scholar
Faure, X. & Le Roux, N. 2012 Time dependent flows in displacement ventilation considering the volume envelope heat transfers. Build. Environ. 50, 221230.CrossRefGoogle Scholar
Heskestad, G. 1984 Engineering relations for fire plumes. Fire Safety J. 7, 2532.CrossRefGoogle Scholar
Holford, J. M. & Hunt, G. R. 2001 The dependence of the discharge coefficients on density contrast – experimental measurements. In Proceedings 14th Australasian Fluid Mechanics Conference (ed. Dally, B. B.), pp. 123126. University of Adelaide.Google Scholar
Hunt, G. R. & Coffey, C. J. 2010 Emptying boxes – classifying transient natural ventilation flows. J. Fluid Mech. 646, 137168.CrossRefGoogle Scholar
Hunt, G. R. & Holford, J. M. 2000 The discharge coefficient – experimental measurement of a dependence on density contrast. In Proceedings of 21st International AIVC Conference, pp. 1224. Air Infiltration and Ventilation Centre, Document AIC-PROC-21-2000.Google Scholar
Hunt, G. R. & Kaye, N. B. 2005 Lazy plumes. J. Fluid Mech. 533, 329338.CrossRefGoogle Scholar
Hunt, G. R. & Linden, P. F. 2001 Steady-state flows in an enclosure ventilated by buoyant forces assisted by wind. J. Fluid Mech. 426, 355386.CrossRefGoogle Scholar
Kaye, N. B. & Hunt, G. R. 2004 Time-dependent flows in an emptying filling box. J. Fluid Mech. 520, 135156.CrossRefGoogle Scholar
Kaye, N. B. & Hunt, G. R. 2007 Overturning in a filling box. J. Fluid Mech. 576, 297323.CrossRefGoogle Scholar
Lane-Serff, G. F. & Sandbach, S. D. 2012 Emptying non-adiabatic filling box: the effects of heat transfers on the fluid dynamics of natural ventilation. J. Fluid Mech. 701, 386406.CrossRefGoogle Scholar
Li, Y. & Delsante, A. 2001 Natural ventilation by combined wind and buoyancy forces. Build. Environ. 36, 5971.CrossRefGoogle Scholar
Linden, P. F., Lane-Serff, G. F. & Smeed, D. A. 1990 Emptying filling boxes, the fluid mechanics of natural ventilation. J. Fluid Mech. 212, 309335.CrossRefGoogle Scholar
Michaux, G. & Vauquelin, O. 2008 Solutions for turbulent buoyant plumes rising from circular sources. Phys. Fluids 20, 066601.CrossRefGoogle Scholar
Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5, 151163.CrossRefGoogle Scholar
Morton, B. R. & Middleton, J. 1973 Scale diagrams for forced plumes. J. Fluid Mech. 58, 165176.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
van Reeuwijk, M. & Craske, J. 2015 Energy-consistent entrainment relations for jets and plumes. J. Fluid Mech. 782, 333355.CrossRefGoogle Scholar
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 2132.CrossRefGoogle Scholar
Rooney, G. G. & Linden, P. F. 1996 Similarity considerations for non-Boussinesq plumes in an unstratified environment. J. Fluid Mech. 318, 237250.CrossRefGoogle Scholar
Vauquelin, O. 2015 Oscillatory behaviour in an emptying-filling box. J. Fluid Mech. 781, 712726.CrossRefGoogle Scholar
Woods, A. W. 1997 A note on non-Boussinesq plumes in an incompressible stratified environment. J. Fluid Mech. 345, 347356.CrossRefGoogle Scholar