Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T05:26:35.006Z Has data issue: false hasContentIssue false

Subgrid modelling for two-dimensional turbulence using neural networks

Published online by Cambridge University Press:  02 November 2018

R. Maulik
Affiliation:
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
O. San*
Affiliation:
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
A. Rasheed
Affiliation:
CSE Group, Mathematics and Cybernetics, SINTEF Digital, N-7465 Trondheim, Norway
P. Vedula
Affiliation:
School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
*
Email address for correspondence: [email protected]

Abstract

In this investigation, a data-driven turbulence closure framework is introduced and deployed for the subgrid modelling of Kraichnan turbulence. The novelty of the proposed method lies in the fact that snapshots from high-fidelity numerical data are used to inform artificial neural networks for predicting the turbulence source term through localized grid-resolved information. In particular, our proposed methodology successfully establishes a map between inputs given by stencils of the vorticity and the streamfunction along with information from two well-known eddy-viscosity kernels. Through this we predict the subgrid vorticity forcing in a temporally and spatially dynamic fashion. Our study is both a priori and a posteriori in nature. In the former, we present an extensive hyper-parameter optimization analysis in addition to learning quantification through probability-density-function-based validation of subgrid predictions. In the latter, we analyse the performance of our framework for flow evolution in a classical decaying two-dimensional turbulence test case in the presence of errors related to temporal and spatial discretization. Statistical assessments in the form of angle-averaged kinetic energy spectra demonstrate the promise of the proposed methodology for subgrid quantity inference. In addition, it is also observed that some measure of a posteriori error must be considered during optimal model selection for greater accuracy. The results in this article thus represent a promising development in the formalization of a framework for generation of heuristic-free turbulence closures from data.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1 (1), 119143.Google Scholar
Beck, A. D., Flad, D. G. & Munz, C.-D.2018 Neural networks for data-based turbulence models. arXiv:1806.04482.Google Scholar
Berselli, L. C., Iliescu, T. & Layton, W. J. 2005 Mathematics of Large Eddy Simulation of Turbulent Flows. Springer.Google Scholar
Canuto, V. M. & Cheng, Y. 1997 Determination of the Smagorinsky–Lilly constant C S . Phys. Fluids 9 (5), 13681378.Google Scholar
Cohen, K., Siegel, S., McLaughlin, T. & Gillies, E. 2003 Feedback control of a cylinder wake low-dimensional model. AIAA J. 41 (7), 13891391.Google Scholar
Cushman-Roisin, B. & Beckers, J.-M. 2011 Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101. Academic.Google Scholar
Duraisamy, K., Iaccarino, G. & Xiao, H.2018 Turbulence modeling in the age of data. arXiv:1804.00183.Google Scholar
Eden, C. & Greatbatch, R. J. 2008 Towards a mesoscale eddy closure. Ocean Model. 20 (3), 223239.Google Scholar
Faller, W. E. & Schreck, S. J. 1997 Unsteady fluid mechanics applications of neural networks. J. Aircraft 34 (1), 4855.Google Scholar
Fox-Kemper, B., Danabasoglu, G., Ferrari, R., Griffies, S. M., Hallberg, R. W., Holland, M. M., Maltrud, M. E., Peacock, S. & Samuels, B. L. 2011 Parameterization of mixed layer eddies. III. Implementation and impact in global ocean climate simulations. Ocean Model. 39 (1–2), 6178.Google Scholar
Frederiksen, J. S., O’Kane, T. J. & Zidikheri, M. J. 2013 Subgrid modelling for geophysical flows. Phil. Trans. R. Soc. Lond. A 371 (1982), 20120166.Google Scholar
Frederiksen, J. S. & Zidikheri, M. J. 2016 Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models. Nonlinear Process. Geophys. 23 (2), 95105.Google Scholar
Galperin, B. & Orszag, S. A. 1993 Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press.Google Scholar
Gamahara, M. & Hattori, Y. 2017 Searching for turbulence models by artificial neural network. Phys. Rev. Fluids 2 (5), 054604.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3 (7), 17601765.Google Scholar
Ghosal, S., Lund, T. S., Moin, P. & Akselvoll, K. 1995 A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229255.Google Scholar
King, R. N., Hamlington, P. E. & Dahm, W. J. 2016 Autonomic closure for turbulence simulations. Phys. Rev. E 93 (3), 031301.Google Scholar
Kingma, D. P. & Ba, J.2014 Adam: a method for stochastic optimization. arXiv:1412.6980.Google Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.Google Scholar
Kutz, J. N. 2017 Deep learning in fluid dynamics. J. Fluid Mech. 814, 14.Google Scholar
Langford, J. A. & Moser, R. D. 1999 Optimal LES formulations for isotropic turbulence. J. Fluid Mech. 398, 321346.Google Scholar
Leith, C. E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11 (3), 671672.Google Scholar
Ling, J., Kurzawski, A. & Templeton, J. 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155166.Google Scholar
Ling, J. & Templeton, J. 2015 Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier–Stokes uncertainty. Phys. Fluids 27 (8), 085103.Google Scholar
Mannarino, A. & Mantegazza, P. 2014 Nonlinear aeroelastic reduced order modeling by recurrent neural networks. J. Fluid. Struct. 48, 103121.Google Scholar
Mansfield, J. R., Knio, O. M. & Meneveau, C. 1998 A dynamic LES scheme for the vorticity transport equation: formulation and a priori tests. J. Comput. Phys. 145 (2), 693730.Google Scholar
Marshall, J. S. & Beninati, M. L. 2003 Analysis of subgrid-scale torque for large-eddy simulation of turbulence. AIAA J. 41 (10), 18751881.Google Scholar
Maulik, R. & San, O. 2017a A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech. 831, 151181.Google Scholar
Maulik, R. & San, O. 2017b A stable and scale-aware dynamic modeling framework for subgrid-scale parameterizations of two-dimensional turbulence. Comput. Fluids 158, 1138.Google Scholar
Milano, M. & Koumoutsakos, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182 (1), 126.Google Scholar
Mohan, A. T. & Gaitonde, D. V.2018 A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks. arXiv:1804.09269.Google Scholar
Moser, R. D., Malaya, N. P., Chang, H., Zandonade, P. S., Vedula, P., Bhattacharya, A. & Haselbacher, A. 2009 Theoretically based optimal large-eddy simulation. Phys. Fluids 21 (10), 105104.Google Scholar
Parish, E. J. & Duraisamy, K. 2016 A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758774.Google Scholar
Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B. R., Girvan, M. & Ott, E. 2018 Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. Chaos 28 (4), 041101.Google Scholar
Piomelli, U., Cabot, W. H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids 3 (7), 17661771.Google Scholar
Raissi, M. & Karniadakis, G. E. 2018 Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125141.Google Scholar
Sagaut, P. 2006 Large Eddy Simulation for Incompressible Flows: An Introduction. Springer.Google Scholar
San, O. & Maulik, R. 2018 Neural network closures for nonlinear model order reduction. Adv. Comput. Math.; doi:10.1007/s10444-018-9590-z.Google Scholar
San, O. & Staples, A. E. 2012 High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids 63, 105127.Google Scholar
San, O., Staples, A. E. & Iliescu, T. 2013 Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model. Ocean Model. 63, 120.Google Scholar
Sarghini, F., De Felice, G. & Santini, S. 2003 Neural networks based subgrid scale modeling in large eddy simulations. Comput. Fluids 32 (1), 97108.Google Scholar
Schaeffer, H. 2017 Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. Lond. A 473 (2197), 20160446.Google Scholar
Singh, A. P., Medida, S. & Duraisamy, K. 2017 Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J. 55 (7), 22152227.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.Google Scholar
Tracey, B. D., Duraisamy, K. & Alonso, J. J. 2015 A machine learning strategy to assist turbulence model development. In 53rd AIAA Aerospace Sciences Meeting; 5–9 January 2015, Paper no: 2015-1287, American Institute of Aeronautics and Astronautics SciTech Forum, Kissimmee, FL.Google Scholar
Vorobev, A. & Zikanov, O. 2008 Smagorinsky constant in LES modeling of anisotropic MHD turbulence. Theor. Comput. Fluid Dyn. 22 (3–4), 317325.Google Scholar
Vreman, A. W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16 (10), 36703681.Google Scholar
Wan, Z. Y., Vlachas, P., Koumoutsakos, P. & Sapsis, T. 2018 Data-assisted reduced-order modeling of extreme events in complex dynamical systems. PloS One 13 (5), e0197704.Google Scholar
Wang, J.-X., Wu, J., Ling, J., Iaccarino, G. & Xiao, H.2017a A comprehensive physics-informed machine learning framework for predictive turbulence modeling. arXiv:1701.07102.Google Scholar
Wang, J.-X., Wu, J.-L. & Xiao, H. 2017b Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2 (3), 034603.Google Scholar
Weatheritt, J. & Sandberg, R. D. 2017 Hybrid Reynolds-averaged/large-eddy simulation methodology from symbolic regression: formulation and application. AIAA J. 55 (11), 37343746.Google Scholar
Wu, J.-L., Xiao, H. & Paterson, E.2018a Data-driven augmentation of turbulence models with physics-informed machine learning. arXiv:1801.02762.Google Scholar
Wu, J.-L., Xiao, H. & Paterson, E. 2018b Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids 3 (7), 074602.Google Scholar
Xiao, H., Wu, J.-L., Wang, J.-X., Sun, R. & Roy, C. J. 2016 Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: a data-driven, physics-informed Bayesian approach. J. Comput. Phys. 324, 115136.Google Scholar