Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T03:49:25.213Z Has data issue: false hasContentIssue false

Interaction between an inclined gravity current and a pycnocline in a two-layer stratification

Published online by Cambridge University Press:  21 January 2020

Yukinobu Tanimoto*
Affiliation:
The Bob and Norma Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA94305-4020, USA
Nicholas T. Ouellette
Affiliation:
The Bob and Norma Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA94305-4020, USA
Jeffrey R. Koseff
Affiliation:
The Bob and Norma Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA94305-4020, USA
*
Email address for correspondence: [email protected]

Abstract

A series of laboratory experiments were conducted to investigate the characteristics of a dense gravity current flowing down an inclined slope into a quiescent two-layer stratification. The presence of the pycnocline causes the gravity current to split and intrude into the ambient at two distinct levels of neutral buoyancy, as opposed to the classical description of gravity currents in stratified media as being either a pure underflow or interflow. The splitting behaviour is observed to be dependent on the Richardson number ($Ri_{\unicode[STIX]{x1D70C}}$) of the gravity current, formulated as the ratio of the excess density and the ambient stratification. For low $Ri_{\unicode[STIX]{x1D70C}}$, underflow is more dominant, while at higher $Ri_{\unicode[STIX]{x1D70C}}$ interflow is more dominant. As $Ri_{\unicode[STIX]{x1D70C}}$ increases, however, we find that the splitting behaviour eventually becomes independent of $Ri_{\unicode[STIX]{x1D70C}}$. Additionally, we have also identified two different types of waves that form on the pycnocline in response to the intrusion of the gravity current. An underflow-dominated regime causes a pycnocline displacement where the speed of the wave crest is locked to the gravity current, whereas an interflow-dominated regime launches an internal wave that moves much faster than the gravity current head or interfacial intrusion.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, D. J. 1990 Elementary Fluid Dynamics. Clarendon Press; Oxford University Press.Google Scholar
Arthur, R. S. & Fringer, O. B. 2014 The dynamics of breaking internal solitary waves on slopes. J. Fluid Mech. 761, 360398.CrossRefGoogle Scholar
Baines, P. G. 2001 Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech. 443, 237270.CrossRefGoogle Scholar
Baines, P. G. 2008 Mixing in downslope flows in the ocean – plumes versus gravity currents. Atmos.-Ocean 46 (4), 405419.CrossRefGoogle Scholar
Benjamin, T. B. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31 (2), 209248.CrossRefGoogle Scholar
Britter, R. E. & Linden, P. F. 1980 The motion of the front of a gravity current travelling down an incline. J. Fluid Mech. 99 (03), 531543.CrossRefGoogle Scholar
Britter, R. E. & Simpson, J. E. 1978 Experiments on the dynamics of a gravity current head. J. Fluid Mech. 88 (2), 223240.CrossRefGoogle Scholar
Britter, R. E. & Simpson, J. E. 1981 A note on the structure of the head of an intrusive gravity current. J. Fluid Mech. 112, 459466.CrossRefGoogle Scholar
Cenedese, C. & Adduce, C. 2010 A new parameterization for entrainment in overflows. J. Phys. Oceanogr. 40 (8), 18351850.CrossRefGoogle Scholar
Chapra, S. C. 1997 Surface Water-Quality Modeling. WCB/McGraw-Hill.Google Scholar
Cheong, H. B., Kuenen, J. J. P. & Linden, P. F. 2006 The front speed of intrusive gravity currents. J. Fluid Mech. 552, 111.CrossRefGoogle Scholar
Cortés, A., Fleenor, W. E., Wells, M. G., de Vicente, I. & Rueda, F. J. 2014a Pathways of river water to the surface layers of stratified reservoirs. Limnol. Oceanogr. 59 (1), 233250.CrossRefGoogle Scholar
Cortés, A., Rueda, F. J. & Wells, M. G. 2014b Experimental observations of the splitting of a gravity current at a density step in a stratified water body. J. Geophys. Res. Oceans 119 (2), 10381053.CrossRefGoogle Scholar
Cortés, A., Wells, M. G., Fringer, O. B., Arthur, R. S. & Rueda, F. J. 2015 Numerical investigation of split flows by gravity currents into two-layered stratified water bodies. J. Geophys. Res. C: Oceans 120 (7), 52545271.CrossRefGoogle Scholar
Crimaldi, J. P. & Koseff, J. R. 2001 High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume. Exp. Fluids 31 (1), 90102.CrossRefGoogle Scholar
Dallimore, C. J., Imberger, J. & Ishikawa, T. 2002 Entrainment and turbulence in saline underflow in lake Ogawara. ASCE J. Hydraul. Engng 127 (11), 937948.CrossRefGoogle Scholar
Davis, K. A. & Monismith, S. G. 2011 The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J. Phys. Oceanogr. 41 (11), 22232241.CrossRefGoogle Scholar
Ellison, T. H. & Turner, J. S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6 (03), 423448.CrossRefGoogle Scholar
Fernandez, R. L. & Imberger, J. 2006 Bed roughness induced entrainment in a high Richardson number underflow. J. Hydraul Res. 44 (6), 725738.CrossRefGoogle Scholar
Fernández-Torquemada, Y., Gónzalez-Correa, J. M., Loya, A., Ferrero, L. M., Díaz-Valdés, M. & Sánchez-Lizaso, J. L. 2009 Dispersion of brine discharge from seawater reverse osmosis desalination plants. Desalin. Water Treat. 5 (1–3), 137145.CrossRefGoogle Scholar
Fischer, H. B., Koh, R., List, J. E., Koh, C. R., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic Press.Google Scholar
Fischer, H. B. & Smith, R. D. 1983 Observations of transport to surface waters from a plunging inflow to lake Mead. Limnol. Oceanogr. 28 (2), 258272.CrossRefGoogle Scholar
Flynn, M. R. & Linden, P. F. 2006 Intrusive gravity currents. J. Fluid Mech. 568, 193202.CrossRefGoogle Scholar
Flynn, M. R. & Sutherland, B. R. 2004 Intrusive gravity currents and internal gravity wave generation in stratified fluid. J. Fluid Mech. 514, 355383.CrossRefGoogle Scholar
Fringer, O. B. & Street, R. L. 2003 The dynamics of breaking progressive interfacial waves. J. Fluid Mech. 494, 319353.CrossRefGoogle Scholar
Hallworth, M. A., Hogg, A. J. & Huppert, H. E. 1998 Effects of external flow on compositional and particle gravity currents. J. Fluid Mech. 359, 109142.CrossRefGoogle Scholar
Hallworth, M. A., Huppert, H. E., Phillips, J. C. & Sparks, R. S. J. 1996 Entrainment into two-dimensional and axisymmetric turbulent gravity currents. J. Fluid Mech. 308, 289311.CrossRefGoogle Scholar
Hebbert, B., Patterson, J., Loh, I. & Imberger, J. 1979 Collie river underflow into the Wellington reservoir. J. Hydraul. Div. 105 (5), 533545.Google Scholar
Hodges, B. R., Furnans, J. E. & Kulis, P. S. 2011 Thin-layer gravity current with implications for desalination brine disposal. ASCE J. Hydraul. Engng 137 (3), 356371.CrossRefGoogle Scholar
Hogg, C. A. R., Egan, G., Ouellette, N. T. & Koseff, J. R. 2017 Shoaling internal waves may reduce gravity current transport. Environ. Fluid Mech. 18 (2), 383394.CrossRefGoogle Scholar
Hogg, C. A. R., Marti, C. L., Huppert, H. E. & Imberger, J. 2013 Mixing of an interflow into the ambient water of lake Iseo. Limnol. Oceanogr. 58 (2), 579592.CrossRefGoogle Scholar
Hogg, C. A. R., Pietrasz, V., Egan, G., Ouellette, N. T. & Koseff, J. R. 2016 The influence of a shoaling internal gravity wave on a dense gravity current. In VIIIth International Symposium on Stratified Flows, San Diego, CA, USA, vol. 1 (1).Google Scholar
Holyer, J. Y. & Huppert, H. E. 1980 Gravity currents entering a two- layer fluid. J. Fluid Mech. 100 (4), 739767.CrossRefGoogle Scholar
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011 The mixing efficiency of interfacial waves breaking at a ridge: 1. Overall mixing efficiency. J. Geophys. Res. Oceans 116 (2), 110.Google Scholar
Huppert, H. E. & Dade, W. B. 1998 Natural disasters: explosive volcanic eruptions and gigantic landslides. Theor. Comput. Fluid Dyn. 10 (1), 201212.CrossRefGoogle Scholar
Jenkins, S., Paduan, J., Roberts, P., Schlenk, D. & Weis, J. 2012 Management of brine discharges to coastal waters recommendations of a science advisory panel. In Southern California Coastal Water Research Project. Costa Mesa, CA.Google Scholar
Krug, D., Holzner, M., Lüthi, B., Wolf, M., Kinzelbach, W. & Tsinober, A. 2015 The turbulent/non-turbulent interface in an inclined dense gravity current. J. Fluid Mech. 765, 303324.CrossRefGoogle Scholar
Kvitek, R. G., Conlan, K. E. & Iampietro, P. J. 1998 Black pools of death: Hypoxic, brine-filled ice gouge depressions become lethal traps for benthic organisms in a shallow Arctic embayment. Mar. Ecol. Progress Series 162, 110.CrossRefGoogle Scholar
Lattemann, S. & Amy, G. 2013 Marine monitoring surveys for desalination plants – a critical review. Desalin. Water Treat. 51 (1–3), 233245.CrossRefGoogle Scholar
Linden, P. F. & Simpson, J. E. 1986 Gravity-driven flows in a turbulent fluid. J. Fluid Mech. 172, 481497.CrossRefGoogle Scholar
Long, R. R. 1956 Solitary waves in the one- and two-fluid systems. Tellus 8 (4), 460471.CrossRefGoogle Scholar
Lowe, R. J., Linden, P. F. & Rottman, J. W. 2002 A laboratory study of the velocity structure in an intrusive gravity current. J. Fluid Mech. 456, 3348.CrossRefGoogle Scholar
MacIntyre, S., Flynn, K. M., Jellison, R. & Romero, J. 1999 Boundary mixing and nutrient fluxes in Mono Lake, California. Limnol. Oceanogr. 44 (3), 512529.CrossRefGoogle Scholar
Marti, C. L. & Imberger, J. 2008 Exchange between littoral and pelagic waters in a stratified lake due to wind-induced motions: Lake Kinneret, Israel. Hydrobiologia 603 (1), 2551.CrossRefGoogle Scholar
Masunaga, E., Fringer, O. B. & Yamazaki, H. 2016 An observational and numerical study of river plume dynamics in Otsuchi Bay, Japan. J. Oceanogr. 72 (1), 321.CrossRefGoogle Scholar
Maurer, B. D. & Linden, P. F. 2014 Intrusion-generated waves in a linearly stratified fluid. J. Fluid Mech. 752, 282295.CrossRefGoogle Scholar
Maxworthy, T., Leilich, J., Simpson, J. E. & Meiburg, E. H. 2002 The propagation of a gravity current into a linearly stratified fluid. J. Fluid Mech. 453, 371394.CrossRefGoogle Scholar
Meiburg, E. H. & Kneller, B. 2010 Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42 (1), 135156.CrossRefGoogle Scholar
Missimer, T. M. & Maliva, R. G. 2017 Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls. Desalination 434 (April 2017), 198215.CrossRefGoogle Scholar
Monaghan, J. J. 2007 Gravity current interaction with interfaces. Annu. Rev. Fluid Mech. 39, 245261.CrossRefGoogle Scholar
Monaghan, J. J., Cas, R. A. F., Kos, A. M. & Hallworth, M. 1999 Gravity currents descending a ramp in a stratified tank. J. Fluid Mech. 379, 3969.CrossRefGoogle Scholar
Moore, C. D., Koseff, J. R. & Hult, E. L. 2016 Characteristics of bolus formation and propagation from breaking internal waves on shelf slopes. J. Fluid Mech. 791, 260283.CrossRefGoogle Scholar
Mott, R. W. & Woods, A. W. 2009 On the mixing of a confined stratified fluid by a turbulent buoyant plume. J. Fluid Mech. 623, 149165.CrossRefGoogle Scholar
Mulder, T. & Alexander, J. 2001 The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48 (2), 269299.CrossRefGoogle Scholar
Negretti, M. E., Flòr, J. B. & Hopfinger, E. J. 2017 Development of gravity currents on rapidly changing slopes. J. Fluid Mech. 833, 7097.CrossRefGoogle Scholar
Odier, P., Chen, J. & Ecke, R. E. 2012 Understanding and modeling turbulent fluxes and entrainment in a gravity current. Physica D Nonlinear Phenomena 241 (3), 260268.CrossRefGoogle Scholar
Odier, P., Chen, J. & Ecke, R. E. 2014 Entrainment and mixing in a laboratory model of oceanic overflow. J. Fluid Mech. 746 (3), 498535.CrossRefGoogle Scholar
Rehmann, C. R.1995. Effects of stratification and molecular diffusivity on the mixing efficiency of decaying grid turbulence. PhD thesis, Stanford University.Google Scholar
Roberts, D. A., Johnston, E. L. & Knott, N. A. 2010 Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res. 44 (18), 51175128.CrossRefGoogle ScholarPubMed
Robinson, T. O., Eames, I. & Simons, R. 2013 Dense gravity currents moving beneath progressive free-surface water waves. J. Fluid Mech. 725, 588610.CrossRefGoogle Scholar
Rueda, F. J., Fleenor, W. E. & de Vicente, I. 2007 Pathways of river nutrients towards the euphotic zone in a deep-reservoir of small size: uncertainty analysis. Ecol. Model. 202 (3), 345361.CrossRefGoogle Scholar
Samothrakis, P. & Cotel, A. J. 2006a Finite volume gravity currents impinging on a stratified interface. Exp. Fluids 41 (6), 9911003.CrossRefGoogle Scholar
Samothrakis, P. & Cotel, A. J. 2006b Propagation of a gravity current in a two-layer stratified environment. J. Geophys. Res. Oceans 111, C01012.CrossRefGoogle Scholar
Shin, J.2001 Colliding gravity currents. PhD thesis, Cambridge University.Google Scholar
Simpson, J. E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 14 (1), 213234.CrossRefGoogle Scholar
Simpson, J. E. 1997 Gravity Currents: in the Environment and the Laboratory. Cambridge University Press.Google Scholar
Simpson, J. E. & Britter, R. E. 1979 The dynamics of the head of a gravity current advancing over a horizontal surface. J. Fluid Mech. 94 (3), 477495.CrossRefGoogle Scholar
Sovilla, B., McElwaine, J. N. & Köhler, A. 2018 The intermittency regions of powder snow avalanches. J. Geophys. Res. Earth Surf. 123 (10), 25252545.CrossRefGoogle Scholar
Sutherland, B. R., Kyba, P. J. & Flynn, M. R. 2004 Intrusive gravity currents in two-layer fluids. J. Fluid Mech. 514, 327353.CrossRefGoogle Scholar
Troy, C. D. & Koseff, J. R. 2005a The generation and quantitative visualization of breaking internal waves. Exp. Fluids 38 (5), 549562.CrossRefGoogle Scholar
Troy, C. D. & Koseff, J. R. 2005b The instability and breaking of long internal waves. J. Fluid Mech. 543, 107136.CrossRefGoogle Scholar
Turner, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.CrossRefGoogle Scholar
Ungarish, M. & Huppert, H. E. 2002 On gravity currents propagating at the base of a stratified fluid. J. Fluid Mech. 458, 283301.CrossRefGoogle Scholar
Venayagamoorthy, S. K. & Fringer, O. B. 2007 On the formation and propagation of nonlinear internal boluses across a shelf break. J. Fluid Mech. 577, 137159.CrossRefGoogle Scholar
Wallace, R. B. & Sheff, B. B. 1987 Two-dimensional buoyant jets in two-layer ambient fluid. ASCE J. Hydraul. Engng 113 (8), 9921005.CrossRefGoogle Scholar
Walter, R. K., Woodson, B. C., Arthur, R. S., Fringer, O. B. & Monismith, S. G. 2012 Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res. Oceans 117 (7), 113.CrossRefGoogle Scholar
Wells, M. G. & Wettlaufer, J. S. 2007 The long-term circulation driven by density currents in a two-layer stratified basin. J. Fluid Mech. 572, 3758.CrossRefGoogle Scholar