Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T03:51:07.525Z Has data issue: false hasContentIssue false

Droplet deformation by short laser-induced pressure pulses

Published online by Cambridge University Press:  04 September 2017

Sten A. Reijers*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Jacco H. Snoeijer
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Mesoscopic Transport Phenomena, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
Hanneke Gelderblom
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

When a free-falling liquid droplet is hit by a laser it experiences a strong ablation-driven pressure pulse. Here we study the resulting droplet deformation in the regime where the ablation pressure duration is short, i.e. comparable to the time scale on which pressure waves travel through the droplet. To this end, an acoustic analytic model for the pressure, pressure impulse and velocity fields inside the droplet is developed in the limit of small density fluctuations. This model is used to examine how the droplet deformation depends on the pressure pulse duration while the total momentum to the droplet is kept constant. Within the limits of this analytic model, we demonstrate that when the total momentum transferred to the droplet is small the droplet shape evolution is indistinguishable from an incompressible droplet deformation. However, when the momentum transfer is increased the droplet response is strongly affected by the pulse duration. In this later regime, compressed flow regimes alter the droplet shape evolution considerably.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A., Bremond, N., le Dizes, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.CrossRefGoogle Scholar
Apitz, I. & Vogel, A. 2005 Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A 81, 329338.Google Scholar
Avila, S. R. G. & Ohl, C.-D. 2016 Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551576.Google Scholar
Banine, V. Y., Koshelev, K. N. & Swinkels, G. H. P. M. 2011 Physical processes in EUV sources for microlithography. J. Phys. D 44, 253001.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Blackstock, D. T. 2000 Fundamentals of Physical Acoustics. Wiley.Google Scholar
Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tunnermann, A. 1996 Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109115.Google Scholar
Clanet, C., Beguin, C., Richard, D. & Quere, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.Google Scholar
Cooker, M. J. & Peregrine, D. H. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.CrossRefGoogle Scholar
Fujioka, S., Shimomura, M., Shimada, Y., Maeda, S., Sakaguchi, H., Nakai, Y., Aota, T., Nishimura, H., Ozaki, N., Sunahara, A. et al. 2008 Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production. Appl. Phys. Lett. 92, 241502.CrossRefGoogle Scholar
Geints, Y. E., Kabanov, A. M., Matvienko, G. G., Oshlakov, V. K., Zemlyanov, A. A., Golik, S. S. & Bukin, O. A. 2010 Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation. Opt. Lett. 35, 27172726.CrossRefGoogle ScholarPubMed
Gelderblom, H., Lhuissier, H., Klein, A. L., Bouwhuis, W., Lohse, D., Villermaux, E. & Snoeijer, J. H. 2016 Drop deformation by laser-pulse impact. J. Fluid Mech. 794, 676699.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.Google Scholar
Klein, A. L., Bouwhuis, W., Visser, C. W., Lhuissier, H., Sun, S., Snoeijer, J. H., Villermaux, E., Lohse, D. & Gelderblom, H. 2015 Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3, 044018.Google Scholar
Kurilovich, D., Klein, A. L., Torretti, F., Lassise, A., Hoekstra, R., Ubachs, W., Gelderblom, H. & Versolato, O. O. 2016 Plasma propulsion of a metallic microdroplet and its deformation upon laser impact. Phys. Rev. Appl. 6, 014018.Google Scholar
Lauterborn, W. & Vogel, A. 2013 Shock Wave Emission by Laser Generated Bubbles, pp. 67103. Springer.Google Scholar
Lindinger, A., Hagen, J., Socaciu, L. D., Bernhardt, T. M., Woste, L. & Leisner, T. 2004 Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Appl. Opt. 43, 52635272.Google Scholar
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.Google Scholar
Philippi, J., Lagree, P. Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 96135.Google Scholar
Reijers, S. A., Gelderblom, H. & Toschi, F. 2016 Axisymmetric multiphase lattice Boltzmann method for generic equations of state. J. Comput. Sci. 17, 309314.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quere, D. 2002 Surface phenomena: contact time of a bouncing drop. Nature 417, 881.Google Scholar
Shan, X., Yuan, X. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413441.Google Scholar
Sigrist, M. W. 1986 Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 60, R83R121.Google Scholar
Sigrist, M. W. & Kneubuhl, F. K. 1978 Laser-generated stress waves in liquids. J. Acoust. Soc. Am. 64, 16521663.CrossRefGoogle Scholar
Succi, S. 2001 The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press.Google Scholar
Sun, C., Can, E., Dijkink, R. & Lohse, D. 2009 Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J. Fluid Mech. 632, 516.Google Scholar
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.Google Scholar
Thoroddsen, S. T., Takehara, K., Etoh, T. G. & Ohl, C.-D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.CrossRefGoogle Scholar
Vogel, A. & Parilitz, S. B. 1996 Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148165.Google Scholar
Wang, X. & Xu, X. 2001 Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107114.Google Scholar
Wildeman, S., Visser, C. W., Sun, C. & Lohse, D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636655.Google Scholar
Wolfram Research Inc.2017 Mathematica 11.1.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159251.Google Scholar
Zhang, J.-Z., Lam, J. K., Wood, C. F., Chu, B.-T. & Chang, R. K. 1987 Explosive vaporization of a large transparent droplet irradiated. Appl. Opt. 26, 47314737.Google Scholar