Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T17:01:20.940Z Has data issue: false hasContentIssue false

Development, morphometrics and other biological characteristics of the whitefly Bemisia tabaci (Gennadius) on cassava

Published online by Cambridge University Press:  19 September 2011

Winston Mark Obed Thompson
Affiliation:
National Agricultural Research Institute, Mon Repos, East Coast Demerara, Guyana, E-mail: [email protected]
Get access

Abstract

The development and morphometrics of the whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) were studied on cassava and a description was made of the different nymphal instars and oter biological characteristics. The nymphal instars were distinguished using easily recognisable morphological characteristics. Abnormally developing individuals were also easily recognised. Regression analysis was highly significant between the length and width of nymphal instars modelled collectively indicating two-dimensional growth at least across three nymphal stadia. Males were smaller than females on the basis of body length, wing width and width of the abdomen. The insects showed better development on a Colombian cassava variety as compared to an African variety, Ebwanateraka from Uganda, and consistently showed a higher proportion of males than females (2.33: 1) for early-emerging individuals. Mean developmental period on both varieties was 22 days and the first instars accounted for the major part of the developmental period which ranged from 19 to 29 days. The mean number of eggs/female/day was 4.89. The actual events of first instar eclosion, which can last up to approximately five minutes, were described. The intervals of honeydew flow to the vasiform orifice lasted a minimum mean time of 20.8 seconds and a maximum mean time of 123 seconds.

Résumé

Le développement et la morphométrie de l'aleurode, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) ont été étudiés sur manioc et une description de différentes étapes de développement nymphal et autres caractéristiques biologiques ont été faites. Les stades nymphaux étaient distingués sur base des traits morphologiques facilement reconnaissables. Les individus avec un développement anormal étaient également facilement identifiables. L'analyse de regression entre la longueur et la largeur du corps des stades nymphaux pris collectivement était très significative, indiquant ainsi une croissance bidimensionnelle au moins à travers trois stades nymphaux. Sur base de la longueur du corps, la largeur de l'aile et la largeur de l'abdomen, les mâles étaient plus petits que les femelles. Les insectes ont montré un meilleur développement sur une variété de manioc de Colpmbie par rapport à Ebwanateraka, une variété africaine d'Ouganda. Ils ont également montré une proportion uniformément plus élevée de males que de femelles (2,33:1) chez des individus précoces. La durée moyenne de développement sur les deux variétés de manioc était de 22 jours et la durée des premiers stades comptaient pour la plus grande partie de la période de développement qui s'étendait de 19 à 29 jours. Le nombre moyen d'oeufs/femelle/jour était de 4,89. Les processus d'éclosion du premier stade, qui peuvent durer approximativement jusqu'à cinq minutes ont été décrits. Les intervalles de temps minimal et maximal d'écoulement du miellat de l'orifice vasifarme était en moyenne de 20,8 et 123 secondes.

Type
Research Articles
Copyright
Copyright © ICIPE 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avidov, Z. (1956) Bionomics of the tobacco whitefly (Bemisia tabaci Gennad) in Israel. Ktavim 7, 2541.Google Scholar
Azab, A. K., Megahed, M. M. and El-Mirsawi, H. D. (1969) Studies on Bemisia tabaci (Genn.) (Hemiptera-Homoptera: Aleyrodidae). Bull. Soc. Ent. Egypte 53, 339352.Google Scholar
Bethke, J. A., Paine, T. D. and Nuessly, G. S. (1991) Comparative biology, morphometrics and development of two populations of Bemisia tabaci (Homoptera: Aleyrodidae) on cotton and poinsettia. Ann. Entomol. Soc. Am. 84, 407411.CrossRefGoogle Scholar
Brown, J. K. (1994) Current status of Bemisia tabaci as a plant pest and virus vector in agro-ecosystems worldwide. FAO Plant Prot. Bull. 42, 332.Google Scholar
Butler, G. D. (Jr), Henneberry, T. J. and Clayton, T. E. (1983) Bemisia tabaci (Homoptera: Aleyrodidae) development, oviposition and longevity in relation to temperature. Ann. Entomol. Soc. Am. 76, 310313.CrossRefGoogle Scholar
Coudriet, D. L., Prabhaker, N., Kishaba, A. N. and Meyerdirk, D. E. (1985) Variation in development rate on different hosts and overwintering of the sweet potato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Environ. Entomol. 14, 516519.CrossRefGoogle Scholar
Dittrich, V., Hassan, S. O. and Ernst, G. H. (1985) Sudanese cotton and the whitefly: A case study of the emergence of a new primary pest. Crop. Prof. 4, 161176.CrossRefGoogle Scholar
El-Helaly, M. S., El-Shazli, A. Y. and El-Gayer, F. H. (1971) Morphological studies on immature stages of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). J. Appl. Entomol. 68, 403–08.Google Scholar
Fauquet, C. and Fargette, D. (1990) African cassava mosaic virus: Etiology, epidemiology and control. Plant Dis. 74, 404411.CrossRefGoogle Scholar
Fishpool, L. D. C. and Burban, C. (1994) Bemisia tabaci: The whitefly vector of African cassava mosaic geminivirus. Trop. Sci. 34, 5572.Google Scholar
Fishpool, L. D. C., Fargette, D., Colvin, J., Thouvenel, J. C., Burban, C. and Fauquet, C. (1996) Sexual dimorphism of fourth instar whitefly nymphs on cassava in the Cote d'lvoire. Trop. Sci. 36, 154158.Google Scholar
Gerling, D., Horowitz, A. R. and Baumgaertner, J. (1986) Autecology of Bemisia tabaci, pp. 520. In Proceedings of a Symposium on Bemisia tabaci—Ecology and Control. XVIIth International Congress of Entomology. Agriculture, Ecosystems and Environment 19–23 Aug 1984, Hamburg, F.R.G. Special Issue 17.CrossRefGoogle Scholar
Hussain, M. A. and Trehan, K. N. (1933) Observations on the life-history, bionomics and control of the whitefly (Bemisia gossypiperda M. & L) on cotton. Indian J. Agric. Sci. 3, 701753.Google Scholar
Lopez-Avila, A. (1986) Taxonomy and biology, pp. 3–.11. In Bemisia tabaci—A Literature Survey (Edited by Cock, M. J. W.). FAO and CAB International Institute of Biological Control, Ascot.Google Scholar
Mound, L. A. (1963) Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Proceedings of the Royal Entomological Society of London (A) 38, 171180.CrossRefGoogle Scholar
Mound, L. A. (1983) Biology and identity of whitefly vectors of plant pathogens, pp. 305313. In Plant Virus Epidemiology: The Spread and Control of Insect Borne Viruses (Edited by Plumb, R. T. and Thresh, J. M.). Blackwell Scientific Publications, Oxford.Google Scholar
Sharaf, N. and Batta, Y. (1985) Effects of some factors on the relationship between the whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and the parasitoid Erectmocerus mundus Mercet (Hymenoptera: Aphelinidae). Z. Angew. Entomol. 99, 267276.CrossRefGoogle Scholar
Tsai, J. H. and Wang, K. (1996) Development and reproduction of Bemisia argentifolii (Homoptera: Aleyrodidae) on five host plants. Environ. Entomol. 25, 810816.CrossRefGoogle Scholar