Objective:To determine the impact of methicillin-resis-tant Staphylococcus aureus (MRSA) colonization on the occurrence of S aureus infections (methicillin-resistant and methicillin-suscep-tible), the use of glycopeptides, and outcome among intensive care unit (ICU) patients.
Design:Prospective observational cohort survey.
Setting:A medical-surgical ICU with 10 single-bed rooms in a 460-bed, tertiary-care, university-affiliated hospital.
Patients:A total of 1,044 ICU patients were followed for the detection of MRSA colonization from July 1, 1995, to July, 1 1998.
Methods:MRSA colonization was detected using nasal samples in all patients plus wound samples in surgical patients within 48 hours of admission or within the first 48 hours of ICU stay and weekly thereafter. MRSA infections were defined using Centers for Disease Control and Prevention standard definitions, except for ventilator-associated pneumonia and catheter-related infections, which were defined by quantitative distal culture samples.
Results:One thousand forty-four patients (70% medical patients) were included in the analysis. Mean age was 61±18 years; mean Simplified Acute Physiologic Score (SAPS) II was 36.4±20; and median ICU stay was 4 (range, 1-193) days. Two hundred thirty-one patients (22%) died in the ICU. Fifty-four patients (5.1%) were colonized with MRSA on admission, and 52 (4.9%) of 1,044 acquired MRSA colonization in the ICU. Thirty-five patients developed a total of 42 S aureus infections (32 MRSA, 10 methi-cillin-susceptible). After factors associated with the development of an S aureus infection were adjusted for in a multivariate Cox model (SAPS II >36: hazard ratio [HR], 1.64; P=.09; male gender: HR, 2.2; P=.05), MRSA colonization increased the risk of S aureus infection (HR, 3.84; P=.0003). MRSA colonization did not influence ICU mortality (HR, 1.01; P=.94). Glycopeptides were used in 11.4% of the patients (119/1,044) for a median duration of 5 days. For patients with no colonization, MRSA colonization on admission, and ICU-acquired MRSA colonization, respectively, glycopeptide use per 1,000 hospital days was 37.7, 235.2, and 118.3 days. MRSA colonization per se increased by 3.3-fold the use of glycopeptides in MRSA-colonized patients, even when an MRSA infection was not demonstrated, compared to non-colonized patients.
Conclusions:In our unit, MRSA colonization greatly increased the risk of S aureus infection and of glycopeptide use in colonized and non-colonized patients, without influencing ICU mortality. MRSA colonization influenced glycopeptide use even if an MRSA infection was not demonstrated; thus, an MRSA control program is warranted to decrease vancomycin use and to limit glycopeptide resistance in gram-positive cocci.