Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T19:08:31.510Z Has data issue: false hasContentIssue false

Nosocomial Methicillin-Resistant and Methicillin-Susceptible Staphylococcus Aureus Primary Bacteremia: At What Costs?

Published online by Cambridge University Press:  02 January 2015

Murray A. Abramson*
Affiliation:
Duke University Medical Center, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina
Daniel J. Sexton
Affiliation:
Duke University Medical Center, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina
*
PO Box 17969, Durham, NC 27715

Abstract

Objective:

To determine the attributable hospital stay and costs for nosocomial methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S aureus (MRSA) primary bloodstream infections (BSIs).

Design:

Pairwise-matched (1:1) nested case-control study.

Setting:

University-based tertiary-care medical center.

Patients:

Patients admitted between December 1993 and March 1995 were eligible. Cases were defined as patients with a primary nosocomial S aureus BSI; controls were selected according to a priori matching criteria.

Measurements:

Length of hospital stay and total and variable direct costs of hospitalization.

Results:

The median hospital stay attributable to primary nosocomial MSSA BSI was 4 days, compared with 12 days for MRSA (P=.023). Attributable median total cost for MSSA primary nosocomial BSIs was $9,661 versus $27,083 for MRSA nosocomial infections (P=.043).

Conclusion:

Nosocomial primary BSI due to S aureus significantly prolongs the hospital stay. Primary nosocomial BSIs due to MRSA result in an approximate threefold increase in direct cost, compared with those due to MSSA.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Banerjee, S, Emori, TG, Culver, DH, Gaynes, RP, Jarvis, WR, Horan, T, et al. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. Am J Med 1991;91(suppl 3B):86S89S.CrossRefGoogle ScholarPubMed
2. Panlilio, AL, Culver, DH, Gaynes, RP, Banerjee, S, Henderson, TS, Tolson, JS, et al. Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-1991. Infect Control Hosp Epidemiol 1992;13:582586.Google Scholar
3. Pittet, D, Tarara, D, Wenzel, RP. Nosocomial bloodstream infection in critically ill patients: excess length of stay, extra costs, and attributable mortality. JAMA 1994; 271:15981601.CrossRefGoogle ScholarPubMed
4. Boyce, JM, Landry, M, Deetz, TR, DuPont, HL. Epidemiologic studies of an outbreak of nosocomial methicillin-resistant Staphylococcus aureus infections. Infect Control 1981;2:110116.CrossRefGoogle ScholarPubMed
5. Wakefield, DS, Helms, CM, Massanari, RM, Mori, M, Pfaller, M. Cost of nosocomial infection: relative contributions of laboratory, antibiotic, and per diem costs in serious Staphylococcus aureus infections. Am J Infect Control 1988;16:185192.CrossRefGoogle ScholarPubMed
6. Rose, RR, Hunting, KJ, Townsend, TR, Wenzel, RP. Morbidity/mortality and economics of hospital-acquired bloodstream infections: a controlled study. South Med J 1977;70:12671269.CrossRefGoogle ScholarPubMed
7. Spengler, RF, Greenough, WB. Hospital costs and mortality attributed to nosocomial bacteremias. JAMA 1978;240:24552458.Google Scholar
8. Garner, JS, Jarvis, WR, Emori, TG, Horan, TC, Hughes, JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16: 128-140.CrossRefGoogle ScholarPubMed
9. Hindler, JA, Warner, NL. Effect of source of Mueller-Hinton agar on detection of oxacillin resistance in Staphylococcus aureus using a screening methodology. J Clin Microbiol 1997;25:734735.CrossRefGoogle Scholar
10. Wey, SB, Mori, M, Pfaller, MA, Woolson, RF, Wenzel, RP. Hospital-acquired candidemia: the attributable mortality and excess length of stay. Arch Intern Med 1988;148:26422645.CrossRefGoogle ScholarPubMed
11. International Classification of Diseases. 9th Revision, Clinical Modification: ICD-9-CM. 3rd ed. USDHHS publication no. (PHS) 891260. Washington, DC: US Department of Health and Human Services; 1989.Google Scholar
12. Transition Systems, Inc. Cost Management Participant's Guide. Boston, MA: Transition Systems, Inc; 1993.Google Scholar
13. Wenzel, RP. The mortality of hospital-acquired bloodstream infections: need for a new vital statistic? Int J Epidemiol 1988;17:225227.CrossRefGoogle ScholarPubMed
14. Lewis, E, Saravolatz, LD. Comparison of methicillin-resistant and methicillin-sensitive Staphylococcus aureus bacteremia. Am J Infect Control 1985;13:109114.Google Scholar
15. Peacock, JE, Marsik, FJ, Wenzel, RP. Methicillin resistant Staphylococcus aureus: introduction and spread within a hospital. Ann Intern Med 1980;93:526532.Google Scholar
16. French, GL, Cheng, AF, Ling, JM, Mo, P, Donnan, S. Hong Kong strains of methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains in bacteremic cancer patients. J Hosp Infect 1990;15:117125.CrossRefGoogle Scholar
17. Hershow, RC, Khayr, WF, Smith, NL. A comparison of clinical virulence of nosocomially acquired methicillin-resistant and methicillin-susceptible Staphylococcus aureus infections in a university hospital. Infect Control Hosp Epidemiol 1992;13:587593.Google Scholar
18. Levine, DP, Fromm, BS, Reddy, BR. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med 1991;115:674680.CrossRefGoogle ScholarPubMed
19. Korzeniowski, O, Sande, MA, the National Collaborative Endocarditis Study Group. Combination antimicrobial therapy for Staphylococcus aureus endocarditis in patients addicted to parenteral drugs and in non-addicts. Ann Intern Med 1982;97:496503.CrossRefGoogle Scholar
20. Small, PM, Chambers, HF. Vancomycin for Staphylococcus aureus endocarditis in intravenous drug users. Antimicrob Agents Chemother 1990;34:12271231.CrossRefGoogle ScholarPubMed
21. Cantoni, L, Wennger, A, Glauser, MP, Bille, J. Comparative efficacy of amoxicillin-clavulanate, cloxacillin, and vancomycin against methicillin-sensitive and methicillin-resistant Staphylococcus aureus endocarditis in rats. J Infect Dis 1989;159:989993.Google Scholar
22. Hirano, L, Bayer, AS. Beta-lactam-beta-lactamase-inhibitor combinations are active in experimental endocarditis caused by beta-lactamase-pro-ducing oxacillin-resistant staphylococci. Antimicrob Agents Chemother 1991;35:685690.Google Scholar
23. Chambers, HF, Kartalija, M, Sande, M. Ampicillin, sulbactam, and rifampin combination treatment of experimental methicillin-resistant Staphylococcus aureus endocarditis in rabbits. J Infect Dis 1995;171:897902.Google Scholar