Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T10:17:56.542Z Has data issue: false hasContentIssue false

A Microbiologic Approach to the Investigation of Bacterial Nosocomial Infection Outbreaks

Published online by Cambridge University Press:  31 March 2016

Donald A. Goldmann*
Affiliation:
Children's Hospital Medical Center, Boston, Massachusetts
Ann B. Macone
Affiliation:
Children's Hospital Medical Center, Boston, Massachusetts
*
Children's Hospital Medical Center. 300 Longwood Ave., Boston, MA 02115

Abstract

This article details the appropriate microbiologic support that is critical to the successful investigation of nosocomial infection problems. The infection control team must have ready access to microbiologic data, and the laboratory should retain epidemiologically relevant bacterial isolates. Investigation of epidemics is facilitated by precise identification of bacteria and careful antibiotic susceptibility testing. In some situations, biotyping, serotyping, phage typing, bacteriocin typing, and other specialized techniques may be required. Plasmid analysis may be useful in the investigation of nosocomial infection problems caused by antibiotic-resistant bacteria.

Type
Original-Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fuchs, PC. The identification and biotyping of common clinical bacterial isolates using the Steers replicator. Am J Clin Pathol 1974; 62:3031.Google Scholar
2.Aldridge, C, Jones, PW, Gibson, Set al. Automated microbiology detection/identification system. J Clin Microbiol 1977; 6:406413.CrossRefGoogle ScholarPubMed
3.Butler, DA, Lobregat, CM, Gaven, TL. Reproducibility of the Analytab (API 20-E) System. J Clin Microbiol 1975; 2:322326.CrossRefGoogle Scholar
4.deSilva, MI, Rubin, SJ. Multiple bioiypes of Klebsiella pneumoniae in single clinical specimens. J Clin Microbiol 1977; 5:6265.Google Scholar
5.Murray, PR. Standardization of the Analytab Enteric (API 20-E) System to increase accuracy and reproducibility of the test for biotype characterization of bacteria. J Clin Microbiol 1978; 8:4649.Google Scholar
6.Stoleru, GH, Gerband, GR, Bauanchaud, DHet al. Etude d'un Plasmide transferable determinant la production d' H2S et la resistance a la tetracycline chez “Escherichia coli”. Ann Inst Pasteur 1972; 123:743754.Google Scholar
7.Grimont, PAD, Grimont, F. Biotyping of Serratia marcescens and its use in epidemiological studies. J Clin Microbiol 1978; 8:7383.Google Scholar
8.Farmer, JJ III, David, BR, Grimont, PADet al. Source of American Serratia. Lancet 1977; 2:459460.CrossRefGoogle ScholarPubMed
9.Mehaffey, MA, Cook, EC, Griffin, CW. Proficiency testing summary analysis. II. Antimicrobial susceptibility testing of Serratia marcescens. DHEW. Atlanta, Georgia, 1979.Google Scholar
10.Bauer, AW. Kirby, WMM, Sherris, JCet al. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 1966; 45:493496.Google Scholar
11.Performance Standards for Antimicrobic Disc Susceptibility Tests. National Committee for Clinical Laboratory Standards. Villanova. Pennsylvania, 1972.Google Scholar
12.Maki, DG. Rhame, FS, Mackel, DCet al. Nationwide epidemic of septicemia caused by contaminated intravenous products. I. Epidemiologic and clinical features. Am J Med 1976; 60:471485.Google Scholar
13.McHugh, GL, Moellering, RC, Hopkins, CC. et al. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1975: 1:235239.CrossRefGoogle ScholarPubMed
14.Murray, BE, Moellering, RC. Patterns and mechanisms of antibiotic resistance. Med Clin NA 1978: 62:899923.Google Scholar
15.O'Callaghan, RJ, Rousset, KM, Harkness, NKet al. Analysis of increasing antibiotic resistance to Klebsiella pneumoniae relative to changes in chemotherapy. J Infect Dis 1978: 138:293298.Google Scholar
16.Thiemke, WA, Nathan, DM. Simultaneous nosocomial outbreaks caused by multiply resistant Klebsiella pneumoniae types 2 and 30. J Clin Microbiol 1978; 8:769771.Google Scholar
17.Blair, JE, Williams, REO. Phage typing of staphylococci. Bull WHO 1961;24:771784.Google Scholar
18.McGowan, JE, Terry, PM, Huang, TSR. Nosocomial infections with gentamicin-resistant Staphylococcus aureus: Plasmid analysis as an epidemiologic tool. J Infect Dis 1979; 140:864872.Google Scholar
19.Baird-Parker, AC. Classification and identification of staphylococci and their resistance to physical agents. In: Cohen, JO (ed). The Staphylococci. New York, Wiley-Interscience, 1972.Google Scholar
20.Heczko, PB, Pulverer, G, Kasprowicz, Aet al. Evaluation of a new bacteriophage set for typing of Staphylococcus epidermidis strains. J Clin Microbiol 1977; 5:573577.Google Scholar
21.Goldmann, DA, Breton, SJ. Group C streptococcal surgical wound infections transmitted by an anal-rectal and nasal carrier. Pediatrics 1978; 61:235237.Google Scholar
22.Hahn, G, Nyberg, I. Identification of streptococcal groups A, B, C and G by slide co-agglutination of antibody-sensitized protein A-containing staphylococci. J Clin Microbiol 1976; 4:99101.Google Scholar
23.Watson, BK, Moellering, RC, Kunz, LJ. Identification of streptococci: Use of lysozyme and Streptomyces albus filtrate in the preparation of extracts for Lancefield grouping. J Clin Microbiol 1975; 1:274278.Google Scholar
24.Aber, RC, Allen, N, Howell, JTet al. Nosocomial transmission of group B streptococci. Pediatrics 1976: 3:346353.CrossRefGoogle Scholar
25.Darling, CL. Standardization and evaluation of the CAMP reaction for the prompt, presumptive identification of Streptococcus agalactiae (Lancefield group B) in clinical material. J Clin Microbiol 1975; 1:171174.Google Scholar
26.Facklam, RR. Padula, JF, Thacker, IGet al. Presumptive identification of group A, B, and D streptococci. Appl Microbiol 1974; 27:107113.Google Scholar
27.Rammelkamp, CH. Harvey Lectures. 113142. 1955-1956.Google Scholar
28.Maxted, WR, Widddowson, JP. The protein antigens of group A streptococci. In: Wannamaker, LW, Matsen, SM (eds). Streptococci and Streptococcal Diseases. New York, Academic Press, 1972.Google Scholar
29.Pollock, HM, Dahlgren, BJ. Distribution of streptococcal groups in clinical specimens with evaluation of bacitracin screening. Appl Microbiol 1974; 27:141.Google Scholar
30.Rennie, RP, Nord, CE, Sjoberg, Let al. Comparison of bacteriophage typing, serotyping, and biotyping as aids in epidemiological surveillance of Klebsiella infections. J Clin Microbiol 1978; 8:638642.CrossRefGoogle ScholarPubMed
31.Murcia, A, Rubin, SJ. Reproducibility of an indirect immunofluorescent-antibody technique for capsular serotyping of Klebsiella pneumoniae. J Clin Microbiol 1979; 9:208213.Google Scholar
32.Buffenmyer, CL, Rycheck, RR, Yee, RB. Bacteriocin (Klebocin) sensitivity typing of Klebsiella. J Clin Microbiol 1976; 4:239244.Google Scholar
33.Huang, CT. Multi-test media for rapid identification of Proteus species with notes on biochemical reactions of strains isolated from urine and pus. J Clin Pathol 1966; 19:438442.CrossRefGoogle Scholar
34.Perch, B. On the serology of the Proteus group. Acta Pathol Microbiol Scand 1948;25:703714.Google Scholar
35.Farmer, JJ III. Epidemiological differentiation of Serratia marcescens: typing by bacteriocin production. Appl Microbiol 1972: 23:218225.Google Scholar
36.Hickman, FW. Farmer, JJ III. Differentiation of Proteus mirabilis by bacteriophage typing and the Dicnes reaction. J Clin Microbiol 1976; 3:350358.CrossRefGoogle ScholarPubMed
37.Anderson, RI, Engley, FB Jr. Typing methods for Proteus rettgeri: comparison of biotype, autibiograms. serotype, and bacteriocin production. J Clin Microbiol 1978: 8:715724.Google Scholar
38.Rubin, SJ. Brock, S, Chamberland, M. Combined serotyping and biotyping of Serratia marcescens. J Clin Microbiol 1976; 3:582585.Google Scholar
39.Traub, WH, Raymond, EA. Epidemiological surveillance of Serratia marcescens infections by bacteriocin typing. Appl Microbiol 1971; 22:10581063.Google Scholar
40.Farmer, JJ III. Epidemiological differentiation of Serratia marcescens: typing by bacteriocin production. Appl Microbiol 1972: 23:218225.Google Scholar
41.Hamilton, RL, Brown, WJ. Bacteriophage typing of clinically isolated Serratia marcescens. Appl Microbiol 1972; 24:899906.CrossRefGoogle ScholarPubMed
42.Brokopp, CD, Gomez-Lus, R, Farmer, JJ III. Serological typing of Pseudomonas aeruginosa: Use of commerical antisera and live antigens. J Clin Microbiol 1977; 5:640649.Google Scholar
43.Farmer, JJ III, Herman, LG. Epidemiological fingerprinting of Pseudomonas aeruginosa by production and sensitivity to pyocin and bacteriophage. Appl Microbiol 1969; 18:760765.Google Scholar
44.Lindberg, RB, Latia, RL. Phage typing of Pseudomonas aeruginosa: Clinical and epidemiologic considerations. J Infect Dis 1974; 130:S33S42.Google Scholar
45.Fisher, MW. Devlin, HB. Gnabasik, FJ. New immunotype schema for Pseudomonas aeruginosa based on protective antigens. J Bacteriol 1969; 98:835836.Google Scholar
46.Homma, JY, Shionoya, H, Yamada, Het al. Production of antibody against Pseudomonas aeruginosa and its serological typing. Japan J Exp Med 1971; 41:8994.Google Scholar
47.Tompkins, LS. Plorde, JJ, Falkow, S. Molecular analysis of R-factors from multiresistant nosocomial isolates. J Infect Dis 1980: 141:625636.CrossRefGoogle ScholarPubMed
48.Gerding, DN. Buxton, AE, Hughes, RA. et al. Noscomial multiply resistant Klebsiella pneumoniae: Epidemiology of an outbreak of apparent index case origin. Antimicrob Agents Chemother 1979; 15:608615.Google Scholar
49.Sadowski, PL, Peterson, BC. Gerding, DN. Physical characterizations of the R plasmids obtained from an outbreak of nosocomial Klebsiella pneumoniae infections. Antimicrob Agents Chemother 1979; 15:616624.Google Scholar
50.O'Brien, TF. Ross, DC, Guzman, MAet al. Dissemination of an antibiotic resistance plasmid in hospital patient flora. Antimicrob Agents Chemother 1980; 17:537543.Google Scholar