Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T11:32:22.408Z Has data issue: false hasContentIssue false

Impact of Vaginal-Rectal Ultrasound Examinations with Covered and Low-Level Disinfected Transducers on Infectious Transmissions in France

Published online by Cambridge University Press:  10 May 2016

Sandrine Leroy*
Affiliation:
Laboratoire de Biostatistique, Epidémiologie, Santé Publique et Informatique Médicale, Centre Hospitalier Universitaire (CHU) de Nîmes, Nîmes, France; and EA 2415 Unit, Montpellier 1 University, Montpellier, France
Fatima M’Zali
Affiliation:
Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, Unité de Mixte de Recherche (UMR) 5234, Bordeaux, France; and Centre National de la Recherche Scientifique, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
Michael Kann
Affiliation:
Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, Unité de Mixte de Recherche (UMR) 5234, Bordeaux, France; and Centre National de la Recherche Scientifique, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France CHU de Bordeaux, Bordeaux, France
David J. Weber
Affiliation:
Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
David D. Smith
Affiliation:
Department of Biostatistics, City of Hope, Duarte, California
*
EA2415 Unit, Montpellier 1 University, 34295 Montpellier, Cedex 5, France ([email protected]).

Abstract

Background.

The risk of cross-infection from shared ultrasound probes in endorectal and vaginal ultrasonography due to low-level disinfection (LLD) is difficult to estimate because potential infections are also sexually transmitted diseases, and route of contamination is often difficult to establish. In France, the widely used standard for prevention of infections is through the use of probe covers and LLD of the ultrasound transducer by disinfectant wipes. We performed an in silico simulation based on a systematic review to estimate the number of patients infected after endorectal or vaginal ultrasonography examination using LLD for probes.

Study design.

We performed a stochastic Monte Carlo computer simulation to produce hypothetical cohorts for a population of 4 million annual ultrasound examinations performed in France, and we estimated the number of infected patients for human immunodeficiency virus (HIV), herpes simplex virus, hepatitis B virus, hepatitis C virus, human papilloma virus, cytomegalovirus, and Chlamydia trachomatis. Modeling parameters were estimated by meta-analysis when possible.

Results.

The probability of infection from a contaminated probe ranged from 1% to 6%, depending on the pathogen. For cases of HIV infection, this would result in approximately 60 infected patients per year. For other common viral infections, the number of new cases ranged from 1,600 to 15,000 per year that could be attributable directly to ultrasound and LLD procedures.

Conclusions.

Our simulation results showed that, despite cumulative use of probe cover and LLD, there were still some cases of de novo infection that may be attributable to ultrasound procedures. These cases are preventable by reviewing the currently used LLD and/or upgrading LLD to high-level disinfection, as recommended by the US Centers for Disease Control and Prevention.

Type
Original Article
Copyright
© 2014 by The Society for Healthcare Epidemiology of America. All rights reserved.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. American Institute of Ultrasound in Medicine (AIUM). Guidelines for Cleaning and Preparing Endocavitary US Transducers between Patients. Laurel, MD: AIUM, 2003.Google Scholar
2. Commission Special Sécurité Sanitaire Comité Technique des Infections Nosocomiales et des Infections Liées Aux Soins. Gaines De Protection à Usage Unique Pour Dispositifs Médicaux Réutilisables: Recommandations d’Utilisation. Paris: Haut Conseil de Santé Publique, 2007.Google Scholar
3. US Food and Drug Administration Center for Devices and Radiological Health (FDA/CDRH). Guidance for Industry: Guidance for Manufacturers Seeking Marketing Clearance of Ear, Nose, and Throat Endoscope Sheaths Used as Protective Barriers. Washington DC: FDA/CDRH, 2000.Google Scholar
4. Amis, S, Ruddy, M, Kibbler, CC, Economides, DL, MacLean, AB. Assessment of condoms as probe covers for transvaginal sonography. J Clin Ultrasound 2000;28(6):295298.Google Scholar
5. Australian Society for Ultrasound in Medicine (ASUM). Guidelines for Disinfection of Intracavitary Transducers: Policies and Statements. Crow’s Nest, New South Wales: ASUM, 2005.Google Scholar
6. Leroy, S. Infectious risk of endovaginal and transrectal ultrasonography: systematic review and meta-analysis. J Hosp Infect 2013;83(2):99106.Google Scholar
7. Antona, D, Bernillon, P, Coignard, B, Gallay, A, Larsen, C, Lot, F. Analyse du Risque Infectieux Lié aux Échographies Endocavitaires, en l’Absence de Protection ou de dé Sinfection des Sondes Entre Patients. Saint-Maurice, France: Institut de Veille Sanitaire Française, 2008.Google Scholar
8. Assemblée Nationale XIIIe Législature. Deuxième Séance du Lundi 9 Mars 2009.Google Scholar
9. Institut de Veille Sanitaire. Infectious risk related to non-sterilization between patients of semi-critical dental devices. 2009. http://www.invs.sante.fr/publications/2009/risques_chirurgie_dentaire/risques_chirurgir_dentaire.pdf.Google Scholar
10. Lewis, DL, Arens, M, Appleton, SS, et al. Cross-contamination potential with dental equipment. Lancet 1992;340(8830):12521254.Google Scholar
11. Artini, M, Scoarughi, GL, Papa, R, et al. Specific anti cross-infection measures may help to prevent viral contamination of dental unit waterlines: a pilot study. Infection 2008;36(5):467471.Google Scholar
12. Hu, T, Li, G, Zuo, Y, Zhou, X. Risk of hepatitis B virus transmission via dental handpieces and evaluation of an anti-suction device for prevention of transmission. Infect Control Hosp Epidemiol 2007;28(1):8082.Google Scholar
13. Kac, G, Podglajen, I, Si-Mohamed, A, Rodi, A, Grataloup, C, Meyer, G. Evaluation of ultraviolet C for disinfection of endocavitary ultrasound transducers persistently contaminated despite probe covers. Infect Control Hosp Epidemiol 2010;31(2):165170.Google Scholar
14. Buffet-Bataillon, S, Vallee, A, Lebrun, B, Cormier, M, Poulian, P, Jolivet-Gougeon, A. Contrôle microbiologique de la désinfection de sondes endovaginales et d’échographie transoesophagienne au CHU de Rennes. In: Program and abstracts of the 20th Congress of the Société Française d’Hygiène Hospitalière (SFHH) and Société des Infirmiers et Infirmières en Hygiène Hospitalière de France (SIIHH). Nice, France: SFHH and SIIHH, 2009. Abstract 312009.Google Scholar
15. Kac, G, Gueneret, M, Rodi, A, et al. Evaluation of a new disinfection procedure for ultrasound probes using ultraviolet light. J Hosp Infect 2007;65(2):163168.CrossRefGoogle ScholarPubMed
16. M’Zali, F, Leroy, S, Kann, M, Quentin-Noury, C. A novel approach for in vitro evaluation of the potential risk of patient contamination during endovaginal ultrasound examinations. In: Program and abstracts of the 24th European Congress of Clinical Microbiology and Infectious Diseases. eP275. Barcelona, Spain: European Society of Clinical Microbiology and Infectious Diseases, 2014.Google Scholar
17. Denis, F, Trepo, C, Alain, S, Chastel, C. Virus des Hépatites B et Delta. Paris: Elsevier; 2004.Google Scholar
18. Lee, WM. Hepatitis B virus infection. New Engl J Med 1997;337(24):17331745.Google Scholar
19. Burchell, A, Winer, R, de Sanjosé, S, Franco, EL. Chapter 6: epidemiology and transmission dynamics of genital HPV infection. Vaccine 2006;24(suppl 3):S3/5261.Google Scholar
20. Hayashi, S, Kimura, H, Oshiro, M, et al. Transmission of cytomegalovirus via breast milk in extremely premature infants. J Perinatol 2011;31(6):440445.Google Scholar
21. Casalegno, JS, Le Bail Carval, K, Eibach, D, et al. High risk HPV contamination of endocavity vaginal ultrasound probes: an underestimated route of nosocomial infection? PLOS ONE 2012;7(10):e48137.CrossRefGoogle ScholarPubMed
22. R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2013.Google Scholar
23. M’Zali, F, Bounizra, C, Leroy, S, Mekki, Y, Quentin-Noury, C, Kann, M. Persistence of microbial contamination on transvaginal ultrasound probes despite low-level disinfection procedure. PLOS ONE 2014;9(4):e93368.Google Scholar
24. Pillonel, J, Cazein, F. The fight against HIV/AIDS and sexually transmitted infections in France: 10 years of surveillance, 1996–2005. Saint-Maurice, France: Institut de Veille Sanitaire, 2007:3235. http://www.invs.sante.fr/publications/2007/10ans_vih/index.html.Google Scholar
25. Downs, AM, De Vincenzi, I. Probability of heterosexual transmission of HIV: relationship to the number of unprotected sexual contacts. European Study Group in Heterosexual Transmission of HIV. J Acquir Immune Defic Syndr Hum Retrovirol 1996;11(4):388395.CrossRefGoogle Scholar
26. Institut de Veille Sanitaire. Prévalence des hépatites B et C en France en 2004. Saint-Maurice, Institut: France de Veille Sanitaire, 2007.Google Scholar
27. Lot, F, Desenclos, J. Epidémiologie de la transmission soignant/soigné: risque lié au VIH, VHC et VHB. Hygienes 2003;11:96100.Google Scholar
28. Jagger, J, Puro, V, De Carli, G. Occupational transmission of hepatitis C virus. JAMA 2002;288(12):1469; author reply 1469–1471.Google Scholar
29. Herpes simplex. In: Heymann, D, ed. Control of Communicable Diseases Manual. 18th ed. Washington DC: American Public Health Association, 2004:268272.Google Scholar
30. LeGoff, J, Saussereau, E, Boulanger, MC, et al. Unexpected high prevalence of herpes simplex virus (HSV) type 2 seropositivity and HSV genital shedding in pregnant women living in an East Paris suburban area. Int J STD AIDS 2007;18(9):593595.CrossRefGoogle Scholar
31. Corey, L, Wald, A, Patel, R, et al. Once-daily valacyclovir to reduce the risk of transmission of genital herpes. New Engl J Med 2004;350(1):1120.Google Scholar
32. de Lima Rocha, MG, Faria, FL, Goncalves, L, Souza Mdo, C, Fernandes, PA, Fernandes, AP. Prevalence of DNA-HPV in male sexual partners of HPV-infected women and concordance of viral types in infected couples. PLOS ONE 2012;7(7):e40988.Google Scholar
33. Bate, SL, Dollard, SC, Cannon, MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin Infect Dis 2010;50(11):14391447.Google Scholar
34. Boeckh, M, Geballe, AP. Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest 2011;121(5):16731680.CrossRefGoogle ScholarPubMed
35. Katz, BP. Estimating transmission probabilities for chlamydial infection. Stat Med 1992;11(5):565577.Google Scholar
36. Clad, A, Prillwitz, J, Hintz, KC, et al. Discordant prevalence of Chlamydia trachomatis in asymptomatic couples screened using urine ligase chain reaction. Eur J Clin Microbiol Infect Dis 2001;20(5):324328.Google Scholar
37. Quinn, TC, Gaydos, C, Shepherd, M, et al. Epidemiologic and microbiologic correlates of Chlamydia trachomatis infection in sexual partnerships. JAMA 1996;276(21):17371742.Google Scholar