Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T01:13:06.907Z Has data issue: false hasContentIssue false

Ertapenem-Resistant Enterobacteriaceae Risk Factors for Acquisition and Outcomes

Published online by Cambridge University Press:  02 January 2015

E. P. Hyle*
Affiliation:
Division of Infectious Diseases, Boston, Massachusetts
M. J. Ferraro
Affiliation:
Department of Pathology, Boston, Massachusetts
M. Silver
Affiliation:
Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
H. Lee
Affiliation:
Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
D. C. Hooper
Affiliation:
Division of Infectious Diseases, Boston, Massachusetts
*
Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114-2696, ([email protected])

Abstract

Background and Objective.

Carbapenem resistance among Enterobacteriaceae is of concern because of increasing prevalence and limited therapeutic options. Limited research has been focused on understanding ertapenem resistance as a more sensitive marker for resistance to other carbapenems. We sought to determine risk factors for acquisition of ertapenem-resistant, meropenem-susceptible, or intermediate Enterobacteriaceae and to assess associated patient outcomes.

Design.

Retrospective case-control study among adult hospitalized inpatients.

Setting.

A 902-bed quaternary care urban hospital.

Results.

Sixty-two cases of ertapenem-resistant Enterobacteriaceae were identified from March 14, 2006, through October 31, 2007, and 62 unmatched control patients were randomly selected from other inpatients with cultures positive for ertapenem-susceptible Enterobacteriaceae. Thirty-seven (60%) of case patient isolates were Enterobacter cloacae, 20 (32%) were Klebsiella pneumoniae, and 5 (8%) were other species of Enterobacteriaceae. Risk factors for ertapenem-resistant Enterobacteriaceae infection included intensive care unit stay (odds ratio [OR], 4.6 [95% confidence interval {CI}, 2.0–10.3]), vancomycin-resistant Enterococcus colonization (OR, 7.1 [95% CI, 2.4–21.4]), prior central venous catheter use (OR, 10.0 [95% CI, 3.0–33.1]), prior receipt of mechanical ventilation (OR, 5.8 [95% CI, 2.1–16.2]), exposure to any antibiotic during the 30 days prior to a positive culture result (OR, 18.5 [95% CI, 4.9–69.9]), use of a β-lactam during the 30 days prior to a positive culture result (OR, 6.9 [95% CI, 3.0–16.0], and use of a carbapenem during the 30 days prior to a positive culture result (OR, 18.2 [95% CI, 2.6–130.0]). For the 62 case patients, 30-day outcomes from the time of positive culture result were 24 discharges (39%), 10 deaths (16%), and 28 continued hospitalizations (44%). The final end point of the hospitalization was discharge for 44 patients (71%) and death for 18 patients (29%).

Conclusions.

Ertapenem-resistant Enterobacteriaceae are important nosocomial pathogens. Multiple mechanisms of resistance maybe in operation. Additional study of ertapenem resistance is needed.

Type
Original Article
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pitout, JDD, Laupland, KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008;8:159166.Google Scholar
2.Paterson, DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006;35(5 suppl 1):S20S28.Google Scholar
3.Nicasio, AM, Kuti, JL, Nicolau, DP. The current state of multidrug-resistant gram-negative bacilli in North America. Pharmacotherapy 2008;28(2):235249.Google Scholar
4.Nordmann, P, Poirel, L. Emerging carbapenemases in gram-negative aerobes. Clin Microbiol Infect 2002;8(6):321331.Google Scholar
5.MacKenzie, FM, Forbes, KJ, Dorai-John, T, Amyes, SG, Gould, IM. Emergence of a carbapenem-resistant Klebsiella pneumoniae. Lancet 1997;350(9080):783.Google Scholar
6.Bratu, S, Mooty, M, Nichani, S, et al.Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob Agents Chemother 2005;49(7):30183020.CrossRefGoogle ScholarPubMed
7.Bratu, S, Landman, D, Haag, R, et al.Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005;165(12):14301435.Google Scholar
8.Leavitt, A, Navon-Venezia, S, Chmelnitsky, I, Schwaber, MJ, Carmeli, Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother 2007;51(8):30263029.Google Scholar
9.Nardkarni, AS, Schliep, T, Khan, L, Zeana, CB. Cluster of bloodstream infections caused by KPC-2 carbapenemase-producing Klebsiella pneumoniae in Manhattan. Am J Infect Control 2009;37(2):121126.Google Scholar
10.Woodford, N, Tierno, PM, Young, K, et al.Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother 2004;48(12): 47934799.Google Scholar
11.Woodford, N, Zhang, J, Warner, M, et al.Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother 2008;62(6):12611264.Google Scholar
12.Peirano, G, Seki, LM, Val Passos, VL, Pinto, MC, Guerra, LR, Asensi, MD. Carbapenem-hydrolysing β-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother 2009;63(2):265268.Google Scholar
13.Samuelson, O, Naseer, U, Tofteland, S, et al.Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J Antimicrob Chemother 2009;63(4):654658.Google Scholar
14.Centers for Disease Control and Prevention. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 2009;58(10):256260.Google Scholar
15.McGettigan, SE, Andreacchio, K, Edelstein, PH. Specificity of ertapenem susceptibility screening for detection of Klebsiella pneumoniae carbapenemases. J Clin Microbiol 2009;47(3):785786.CrossRefGoogle ScholarPubMed
16.Knaus, WA, Drapier, EA, Wagner, DP, Zimmerman, JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818829.Google Scholar
17.Richter, SS, Ferraro, MJ. Susceptibility testing instrumentation and computerized expert systems for data analysis and interpretation. In: Murray, PR, Baron, EJ, Jorgensen, JH, Landry, ML, Pfaller, MA, eds. Manual of Clinical Microbiology. 9th ed. Washington, DC: American Society for Microbiology, 2007:245256.Google Scholar
18.Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing—19th informational supplement. Wayne, PA: CLSI; 2009. CLSI document M100-S19.Google Scholar
19.Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk susceptibility tests: approved standard M2-A10. Wayne, PA: CLSI; 2009. CLSI document M2-A10.Google Scholar
20.Jacoby, GA. AmpC β-lactamases. Clin Microbiol Rev 2009;22(1):161182.Google Scholar
21.Bradford, P, Urban, C, Mariano, N, Projan, S, Rahal, J, Bush, K. Lmipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid- mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 1997;41(3):563569.Google Scholar
22.Schwaber, MJ, Klarfeld-Lidji, S, Navon-Venezia, S, Schwartz, D, Leavitt, A, Carmeli, Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 2008;52(3):10281033.Google Scholar
23.Kwak, YG, Choi, SH, Choo, EJ, et al.Risk factors for the acquisition of carbapenem-resistant Klebsiella pneumoniae among hospitalized patients. Microb Drug Resist 2005;11(2):165169.Google Scholar
24.Hussein, K, Sprecher, H, Mashiach, T, Oren, I, Kassis, I, Finkelstein, R. Carbapenem resistance among Klebsiella pneumoniae isolates: risk factors, molecular characteristics, and susceptibility patterns. Infect Control Hosp Epidemiol 2009;30(7):666671.Google Scholar
25.Jeon, MH, Choi, SH, Kwak, YG, et al.Risk factors for the acquisition of carbapenem-resistant Escherichia coli among hospitalized patients. Diagn Microbiol Infect Dis 2008;62(4):402406.Google Scholar
26.Falagas, ME, Rafailidis, PI, Kofteridis, D, et al.Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother 2007;60(5):11241130.CrossRefGoogle ScholarPubMed
27.Gasink, L, Edelstein, P, Lautenbach, E, Synnestvedt, M, Fishman, N. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol 2009;30(12):11801185.Google Scholar
28.Patel, G, Huprikar, S, Factor, SH, Jenkins, SG, Calfee, DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008;29(12): 10991106.Google Scholar
29.Hyle, EP, Bilker, WB, Gasink, LB, Lautenbach, E. Impact of different methods for describing the extent of prior antibiotic exposure on the association between antibiotic use and antibiotic-resistant infection. Infect Control Hosp Epidemiol 2007;28(6):647654.Google Scholar
30.Poirel, L, Heritier, C, Spicq, C, Nordmann, P. In vivo acquisition of high-level resistance to imipenem in Escherichia coli. J Clin Microbiol 2004;42(8):38313833.CrossRefGoogle ScholarPubMed
31.Navon-Venezia, S, Chmelnitsky, I, Leavitt, A, Schwaber, MI, Schwartz, D, Carmeli, Y. Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrob Agents Chemother 2006;50(9):30983101.Google Scholar
32.Hong, T, Moland, ES, Abdalhamid, B, et al.Escherichia coli: development of carbapenem resistance during therapy. Clin Infect Dis 2005;40(10): e84e86.CrossRefGoogle ScholarPubMed
33.Gulmez, D, Woodford, N, Palepou, MF, et al.Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from Turkey with OXA-48-like carbapenemases and outer membrane protein loss. Int I Antimicrob Agents 2008;31(6):523526.Google Scholar
34.Miriagou, V, Tzelepi, E, Gianneli, D, Tzouvelekis, LS. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-β-lactamase VIM-1. Antimicrob Agents Chemother 2003;47(1):395397.Google Scholar
35.Tenover, FC, Kalsi, RK, Williams, PRet al.Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg Infect Dis 2006;12(8):12091213.Google Scholar
36.Anderson, KF, Lonsway, DR, Rasheed, JK, et al.Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol 2007;45(8):27232725.CrossRefGoogle ScholarPubMed
37.Harris, AD, Samore, MH, Lipsitch, M, Kaye, KS, Perencevich, E, Carmeli, Y. Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, enterococci, and Escherichia coli. Clin Infect Dis 2002;34(12):15581563.Google Scholar
38.Souli, M, Galani, I, Antoniadou, A, et al.An outbreak of infection due to ß-lactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek university hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis 2010;50(3):364373.Google Scholar