Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T18:27:51.698Z Has data issue: false hasContentIssue false

Biocides Currently Used for Bronchoscope Decontamination Are Poorly Effective Against Free-Living Amoebae

Published online by Cambridge University Press:  02 January 2015

Gilbert Greub
Affiliation:
Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
Didier Raoult*
Affiliation:
Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
*
Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, 27, Boulevard Jean Moulin, 13385 Marseille Cedex 05, France

Abstract

Free-living amoebae may be pathogenic and harbor several agents of pneumonia. We tested the susceptibility of amoebal cysts and trophozoites to currently used biocides for bronchoscope decontamination. We showed that two particular biocides are inadequate for disinfecting bronchoscopes, as Acanthamoeba polyphaga survived 3 hours of exposure to these undiluted agents.

Type
Concise Communications
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rodriguez-Zaragoza, S. Ecology of free-living amoebae. Crit Rev Microbiol 1994;20:225241.Google Scholar
2.Silvany, RE, Dougherty, JM, McCulley, JP, Wood, TS, Bowman, RW, Moore, MB. The effect of currently available contact lens disinfection systems on Acanthamoeba castellami and Acanthamoeba polyphaga. Ophthalmology 1990;97:286290.Google Scholar
3.Hiti, K, Walochnik, J, Haller-Schober, EM, Faschinger, C, Aspock, H. Viability of Acanthamoeba after exposure to a multipurpose disinfecting contact lens solution and two hydrogen peroxide systems. Br J Ophthalmol 2002;86:144146.CrossRefGoogle ScholarPubMed
4.Marciano-Cabral, F, Cabrai, G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 2003;16:273307.Google Scholar
5.Armstrong, M. The pathogenesis of human Acanthamoeba infection. Infect Dis Rev 2000;2:6573.Google Scholar
6.Winiecka-Krusnell, J, Linder, E. Free-living amoebae protecting Legionella in water: the tip of an iceberg? Scand J Infect Dis 1999;31:383385.Google Scholar
7.Mitchell, DH, Hicks, LJ, Chiew, R, Montanaro, JC, Chen, SC. Pseudoepidemic of Legionella pneumophila serogroup 6 associated with contaminated bronchoscopes. J Hosp Infect 1997;37:1923.Google Scholar
8.Ayliffe, GA. Nosocomial infections associated with endoscopy. In: Mayhall, CG, ed. Hospital Epidemiology and Infection Control. Philadelphia: Lippincott Williams & Wilkins; 1999:881895.Google Scholar
9.Steinert, M, Birkness, K, White, E, Fields, B, Quinn, F. Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl Environ Microbiol 1998;64:22562261.CrossRefGoogle ScholarPubMed
10.Greub, G, Raoult, D. Crescent bodies of Parachlamydia acanthamoeba and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl Environ Microbiol 2002;68:30763084.Google Scholar
11.Woodcock, A, Campbell, I, Collins, JV, et al.Bronchoscopy and infection control. Lancet 1989;2:270271.Google Scholar
12.Wallace, CG, Agée, PM, Demicco, DD. Liquid chemical sterilization using peracetic acid: an alternative approach to endoscope processing. ASAIO J 1995;41:151154.Google Scholar