Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T00:02:17.131Z Has data issue: false hasContentIssue false

Assessing Excess Nurse Work Load Generated by Multiresistant Nosocomial Bacteria in Intensive Care

Published online by Cambridge University Press:  02 January 2015

Fabienne F. Saulnier*
Affiliation:
Service de Réanimation Médicale, H'opital Calmette, Lille Cedex Laboratoire d'Évaluation Médicale, Lille Cedex
Hervé Hubert
Affiliation:
Laboratoire d'Évaluation Médicale, Lille Cedex
Thierry M. Onimus
Affiliation:
Service de Réanimation Médicale, H'opital Calmette, Lille Cedex
Sébastien Beague
Affiliation:
Service de Réanimation Médicale, H'opital Calmette, Lille Cedex Laboratoire d'Évaluation Médicale, Lille Cedex
Saad Nseir
Affiliation:
Service de Réanimation Médicale, H'opital Calmette, Lille Cedex Laboratoire d'Évaluation Médicale, Lille Cedex
Bruno Grandbastien
Affiliation:
Unité de Lutte contre les Infections Nosocomiales, Calmette Hospital, Lille Cedex, France
Catherine Y. Renault
Affiliation:
Service de Réanimation Médicale, H'opital Calmette, Lille Cedex
Myrian Idzik
Affiliation:
Service de Réanimation Médicale, H'opital Calmette, Lille Cedex
Martine P. Erb
Affiliation:
Unité de Lutte contre les Infections Nosocomiales, Calmette Hospital, Lille Cedex, France
Alain V. Durocher
Affiliation:
Service de Réanimation Médicale, H'opital Calmette, Lille Cedex Laboratoire d'Évaluation Médicale, Lille Cedex
*
Service de Réanimation, Hôpital Calmette, Boulevard Prof. J. Leclercq, 59037 Lille Cedex, France

Abstract

Objective:

To compare three methods for assessing the excess nurse work load related to recommended procedures for managing nosocomial infections (NI) due to multiresistant bacteria (MRB): two activity scores, the Omega score and the Projet de Recherche en Nursing (PRN) system, and a specific evaluation based on functional analysis of nursing procedures.

Setting:

10 beds in a medical intensive care unit (MICU).

Patients:

Patients admitted from November 15,1995, to June 15, 1996, were included and divided in two groups based on presence of MRB colonization or infection (MRB+ and MRB− groups).

Methods:

Data were collected regarding length of stay (LOS) in days; Omega score for the entire stay; PRN score for the entire stay and per day; and time required to perform correctly four nursing procedures related to MRB NI, as evaluated specifically by the nursing staff, using a detailed functional analysis document that described all elementary nursing tasks in chronological order and all material needed to carry out those tasks.

Results:

The LOS and total Omega and PRN scores were higher in the MRB+ group than in the MRB− group: LOS, 23±20.6 versus 12±15.3 days, (P<.001); Omega score, 164±103.4 versus 123±93.7 points (P<.001); PRN score, 3,606±3,187 versus 1,854±2,356 points (P<.001), respectively. The daily PRN score was also higher in MRB+ group (PRN, 160±25 vs 146±34 points in the MRB− group; P<.028). Four nursing procedures made necessary by MRB acquisition were identified: isolation precautions, with two levels according to whether the risk of contamination was mild-moderate or high; bathing the patient with antiseptic solution;, bedpan management; and microbiological screening. The functional analysis indicated that the time needed to carry out these four procedures correctly was 245 minutes per patient per day, as compared to 85 minutes according to the PRN system.

Conclusions:

Our data confirm that MRB NIs are responsible for an increase in nurse work load, as estimated by LOS, Omega, and PRN scores. However, the daily excess nurse work load related directly to recommended procedures for managing MRB NIs in MICUs is underestimated by these activity scores, as compared to a specific functional analysis of nursing tasks. This may be of importance in evaluating potential links between nurse work load and MRB NIs and in determining the number of nurse hours needed to comply with infection control recommendations.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Vincent, JL, Bihari, DJ, Suter, PM. For the EPIC International Advisory Committee. The prevalence of nosocomial infection in intensive care units in Europe: results of the EPIC study. JAMA 1995;274:639644.CrossRefGoogle ScholarPubMed
2.Garner, JS, the Hospital Infection Control Practices Advisory Committee. Guideline for isolation precautions in hospitals. Infect Control Host Epidemiol 1996;24:2452.Google Scholar
3.Société Française d'Hygiène Hospitalière. Recommandations d'isolement septique à l'Hôpital. Hygiène 1996:1.Google Scholar
4.Hospital Infection Control Practices Advisory Committee (HICPAC). Recommendations for preventing the spread of vancomycin resistance. Infect Control Hosp Epidemiol 1995;16:105113.CrossRefGoogle Scholar
5.Conférence de Consensus en Réanimation. Prévention des infections à bactéries multi-résistantes en Réanimation (en dehors des modalités d'optimisation de l'antibiothérapie). Réan Urg 1997;6:167173.Google Scholar
6.Spengler, RF, Greenough, WB. Hospital costs and mortality attributed to nosocomial bacteremias. JAMA 1978;240:24552458.CrossRefGoogle ScholarPubMed
7.Landry, SL, Kaiser, DL, Wenzel, RP. Hospital stay and mortality attributed to nosocomial enterococcal bacteremia: a controlled study. Am J Infect Control 1989;17:323329.CrossRefGoogle ScholarPubMed
8.Asensio Vegas, A, Monge Jodra, V, Lizan Garcia, M. Nosocomial infection in a surgical wards: a controlled study of increased duration of hospital stays and direct cost of hospitalization. Eur J Epidemiol 1993;9:504510.CrossRefGoogle Scholar
9.Haley, RW, Schaberg, DR, Crossley, KB, Von Allmen, SD, McGowan, JE. Extra charges and prolongation of stay attributable to nosocomial infections; a prospective interhospital comparison. Am J Med 1981;70:5158.CrossRefGoogle ScholarPubMed
10.Kappstein, I, Schulgen, G, Beyer, U, Geiger, K, Schumacher, M, Daschner, FD. Prolongation of hospital stay and extra costs due to ventilator-associated pneumonia in an intensive care unit. Eur J Clin Microbiol Infect Dis 1992;11:504508.CrossRefGoogle Scholar
11.Coello, R, Glenister, H, Fereres, J, Bartlett, C, Leigh, D, Sedgwick, J, et al. The cost of infection in surgical patients: case-control study. J Hosp Infect 1993;25:239250.CrossRefGoogle ScholarPubMed
12.Durand-Zaleski, I. Estimating the cost of intensive care. Intern Care Med 1994;20:538539.CrossRefGoogle ScholarPubMed
13.Haley, RW, Bregman, DA. The role of understaffing and overcrowding in recurrent outbreaks of staphylococcal infection in a neonatal special-care unit. J Infect Dis 1982;145:875885.CrossRefGoogle Scholar
14.Haley, RW, Cushion, NB, Tenover, FC, Bannerman, TL, Dryer, D, Ross, J, et al. Eradication of endemic methicillin-resistant Staphylococcus aureus infections from a neonatal intensive care unit. J Infect Dis 1995;171:614624.CrossRefGoogle ScholarPubMed
15.Pittet, D, Touveneau, S, Paccaud, U, Chevrolet, J-C. Infections acquises en réanimation et surcharge en soins. 7ème Congrès de l'Association Latine pour l'Analyse des Systèmes de Santé; Geneva, Switzerland. 1996:301304.Google Scholar
16.Saulnier, F, Grandbastien, B, Poisson, C, Renault, C, Idzik, M, Delbecq, C, et al. Conséquences de la multirésistance bactérienne en Réanimation sur la durée de séjour et la charge en soins. Rean Urg 1997;6:213222.CrossRefGoogle Scholar
17.Girou, E, Stephan, F, Novara, A, Safar, M, Fagon, JY. Risk factors and out-come of nosocomial infections: results of a matched case-control study of ICU patients. Am J Respir Crit Care Med 1998;157:11511158.CrossRefGoogle Scholar
18.Société de réanimation de la langue française. Score d'activité Oméga. Guide des Outils d'évaluation en Réanimation. Paris, France: Arnette;1995:3944.Google Scholar
19.Equipe de recherche opérationnelle en santé (EROS). PRN 1987. Montréal, Quebec, Canada: Bibliothèque Nationale du Québec et du Canada; 1988.Google Scholar
20.Saulnier, F, Duhamel, A, Descamps, JM, de Pouvourville, G, Durocher, A, Blettery, B, et al. Indicateur simplifié de la charge en soins spécifique à la réanimation: le PRN réa. Réan Urg 1995;4:559569.CrossRefGoogle Scholar
21.Garner, JS, Jarvis, WR, Emori, TG, Horan, TC, Hughes, JM. Centers for Disease Control definition for nosocomial infection. Am J Infect Control 1988;16:128140.CrossRefGoogle Scholar
22.Le Gall, JR, Lemeshow, S, Saulnier, F. New simplified acute physiology score (SAPS II) based on a European /North American Multicenter Study. JAMA 1993;270:29572963.CrossRefGoogle ScholarPubMed
23.Champ Oméga: actes de Réanimation. Catalogue des Actes Médicaux. BO no. 954 bis:19-31. Paris, France: Ministère des Affaires Sociales, de la Santé et de la Ville; 1995.Google Scholar
24.Garin, H. AMDEC/AMDE/AEEL L'essentiel de la méthode. Paris, France: Agence Française de Normalisation; 1993.Google Scholar
25.Arnow, PM, Allyn, PA, Nichols, EM, Hill, BL, Pezzlo, M, Bartlett, RH. Control of methicillin-resistant Staphylococcus aureus in a burn unit: role of nurse staffing. J Trauma 1982;22:954959.CrossRefGoogle Scholar
26.Taunton, RL, Kleinbeck, SVM, Stafford, R, Woods, CQ, Bott, MJ. Patient outcomes. Are they linked to registered nurse absenteeism, separation, or workload? J Nurs Adm 1994;24:4854.CrossRefGoogle ScholarPubMed
27.Fridkin, SK, Pear, SM, Williamson, TH, Galgiani, JN, Jarvis, WR. The role of understaffing in central venous catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 1996;17:150158.Google ScholarPubMed
28.Robert, J, Fridkin, SK, Blumberg, HM, Anderson, B, White, N, Ray, SM, et al. The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infect Control Hosp Epidemiol 2000;21:1217.CrossRefGoogle Scholar
29.Cullen, DJ, Civetta, BA. Therapeutic Intervention Scoring System: a method for quantitative comparison of patient care. Crit Care Med 1974;2:5761.CrossRefGoogle ScholarPubMed
30.Haley, RW, Schaberg, DR, Von Allmen, SD, McGowan, JE. Estimating the extra charges and prolongation of hospitalization due to nosocomial infections: a comparison of methods. J Infect Dis 1980;141:248257.CrossRefGoogle ScholarPubMed
31.Erbaydar, S, Akgün, A, Eksik, A, Erbaydar, T, Bilge, O, Bulut, A. Estimation of increased hospital stay due to nosocomial infections in surgical patients: comparison of matched groups. J Hosp Infect 1995;30:149154.CrossRefGoogle ScholarPubMed
32.Wakefield, DS, Pfaller, M, Ludke, RL, Wenzel, RP. Methods for estimating days of hospitalization due to nosocomial infections. Med Care 1992;30:373376.CrossRefGoogle ScholarPubMed
33.Soulier, A, Barbut, F, Ollivier, JM, Petit, JC, Lienhart, A. Decreased transmission of Enterobacteriaceae with extended-spectrum β-lactamases in an intensive care unit by nursing reorganization. J Hosp Infect 1995;31:8997.CrossRefGoogle Scholar
34.Boyce, JM, Potter-Bynoe, G, Dziobek, L, Solomon, SL. Nosocomial pneumonia in Medicare patients. Hospital costs and reimbursement patterns under the prospective payment system. Arch Intern Med 1991;151:11091114.CrossRefGoogle ScholarPubMed