Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T00:28:42.488Z Has data issue: false hasContentIssue false

On the diverse and widely ignored Paleocene avifauna of Menat (Puy-de-Dôme, France): new taxonomic records and unusual soft tissue preservation

Published online by Cambridge University Press:  26 February 2018

GERALD MAYR*
Affiliation:
Senckenberg Research Institute and Natural History Museum Frankfurt, Ornithological Section, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
SOPHIE HERVET
Affiliation:
Association Paléovergne, Musée de Menat, Mairie de Menat, 63560 Menat, France
ERIC BUFFETAUT
Affiliation:
Centre National de la Recherche Scientifique, UMR 8538, Laboratoire de Géologie de l'Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75231 Paris Cedex 05, France Palaeontological Research and Education Centre, Mahasarakham University, Mahasarakham, Thailand
*
Author for correspondence: [email protected]

Abstract

The Paleocene locality of Menat (Puy-de-Dôme, France) has yielded several avian fossils, which remained poorly studied, even though some were found almost a century ago. Here, we review some of the material in public collections and show that those birds from Menat, which are at least tentatively identifiable, resemble taxa from early Eocene fossil localities. A largely complete skeleton of a medium-sized bird with strong feet shows affinities to the early Eocene Halcyornithidae and Messelasturidae, which are considered to be representatives of the clade including Psittaciformes and Passeriformes. Another skeleton of a small species resembles the Songziidae from the lower Eocene of China, which are representatives of Ralloidea, the clade including Rallidae and Heliornithidae. A new and previously unreported specimen exhibits exceptional soft tissue preservation, in that the bones appear to be largely dissolved but the podotheca of the feet and even the soft parts around the shank are visible; the plumage remains of this specimen furthermore show an unusual bluish hue.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angst, D. & Buffetaut, E. 2013. The first mandible of Gastornis Hébert, 1855 (Aves, Gastornithidae) from the Thanetian (Paleocene) of Mont-de-Berru (France). Revue de Paléobiologie 32, 423–32.Google Scholar
Balazuc, J. & Descarpentries, A. 1964. Sur Lampra gautieri et quelques autres Buprestidae fossiles des schistes de Menat (Puy-de-Dôme). Bulletin de la Société Entomologique de France 69, 47108.Google Scholar
Bertelli, S., Chiappe, L. M. & Mayr, G. 2012. A new Messel rail from the Early Eocene Fur Formation of Denmark (Aves, Messelornithidae). Journal of Systematic Palaeontology 9, 551–62.Google Scholar
BiochroM’97. 1997. Synthèses et tableaux de corrélations. In Actes du Congrès BiochroM’97 (eds Aguilar, J.-P., Legendre, S. & Michaux, J.). Mémoires et Travaux de l'Institut de Montpellier de l’École Pratique des Hautes Études 21, 769805.Google Scholar
Boetticher, H. von. 1929. Morphologische und phylogenetische Studien über die hornige Fußbekleidung der Vögel. Jenaische Zeitschrift für Naturwissenschaft 64, 377448.Google Scholar
Briggs, D. E. G., Kear, A. J., Martill, D. M. & Wilby, P. R. 1993. Phosphatization of soft-tissue in experiments and fossils. Journal of the Geological Society, London 150, 1035–8.Google Scholar
Buffetaut, E. 1997. New remains of the giant bird Gastornis from the Upper Palaeocene of the eastern Paris Basin and the relationships between Gastornis and Diatryma. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 3, 179–90.Google Scholar
Buffetaut, E. & Angst, D. 2014. Stratigraphic distribution of large flightless birds in the Palaeogene of Europe and its palaeobiological and palaeogeographical implications. Earth-Science Reviews 138, 394408.Google Scholar
de Bast, E., Steurbaut, E. & Smith, T. 2013. New mammals from the marine Selandian of Maret, Belgium, and their implications for the age of the Paleocene continental deposits of Walbeck, Germany. Geologica Belgica 16, 236–44.Google Scholar
Dollo, L. 1883. Note sur la présence du Gastornis Edwardsii, Lemoine, dans l'assise inférieure de l’étage Landénien à Mesvin, près Mons. Bulletin du Musée royal d'Histoire naturelle de Belgique 2, 297305.Google Scholar
Falk, A. R., Kaye, T. G., Zhou, Z. & Burnham, D. A. 2016. Laser fluorescence illuminates the soft tissue and life habits of the Early Cretaceous bird Confuciusornis. PLoS One 11, e0167284. doi: 10.1371/journal.pone.0167284.Google Scholar
Garrouste, R., Wedmann, S., Pouillon, J. M. & Nel, A. 2017. The oldest ‘amphipterygid’ damselfly of tropical affinities in the Paleocene of Menat (Zygoptera: Eucaloptera). Historical Biology 29, 818–21.Google Scholar
Gingerich, P. D. 1976. Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). University of Michigan Papers on Paleontology 15, 1116.Google Scholar
Guth, C. 1962. Un insectivore de Menat. Annales de Paléontologie 48, 110.Google Scholar
Guthrie, R. D. 2013. Frozen Fauna of the Mammoth Steppe: The Story of Blue Babe. Chicago: University of Chicago Press.Google Scholar
Harrison, C. J. O. & Walker, C. A. 1972. The affinities of Halcyornis from the Lower Eocene. Bulletin of the British Museum (Natural History), Geology series 21, 153–70.Google Scholar
Hartung, V., Garrouste, R., Pouillon, J. M. & Nel, A. 2016. First fossil of Cylindrostethinae (Heteroptera: Gerromorpha: Gerridae) in the Paleocene of Menat, France. Palaeontologia Electronica 19, 110.Google Scholar
Hesse, A. 1990. Die Beschreibung der Messelornithidae (Aves: Gruiformes: Rhynocheti) aus dem Alttertiär Europas und Nordamerikas. Courier Forschungsinstitut Senckenberg 128, 1176.Google Scholar
Hesse, A. 1992. A new species of Messelornis (Aves: Gruiformes: Messelornithidae) from the Middle Eocene Green River Formation. Natural History Museum of Los Angeles County, Science Series 36, 171–8.Google Scholar
Hou, L. H. 1990. An Eocene bird from Songzi, Hubei province. Vertebrata PalAsiatica 28, 3442.Google Scholar
Kedves, M. 1967. Quelques types de sporomorphes du bassin lignitiferes de Menat. Acta Biologica Szegediensis 13, 1123.Google Scholar
Kedves, M. & Russell, D. E. 1982. Palynology of the Thanetian layers of Menat. The geology of the Menat Basin, France. Palaeontographica, Abteilung В; 182, 87150.Google Scholar
Ksepka, D. T., Stidham, T. A. & Williamson, T. E. 2017. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction. Proceedings of the National Academy of Sciences 114, 8047–52.Google Scholar
Launay, L., de. 1908. La fourrure d'un écureuil tertiaire. Nature (Paris) 36, 393–5.Google Scholar
Launay, L., de. 1923. Études sur le plateau central. V. Notes sur le terrain tertiaire de la Limagne bourbonnaise. Bulletin des Services de la Carte Géologique de la France 36, 1146.Google Scholar
Lecoq, H. 1829. Description géologique du bassin de Menat. Annales Scientifiques, Littéraires et Industrielles de l'Auvergne 2, 433–47.Google Scholar
Legalov, A. A., Kirejtshuk, A. G. & Nel, A. 2017. New and little known weevils (Coleoptera: Curculionoidea) from the Paleocene of Menat (France). Comptes Rendus Palevol 16, 248–56.Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, 10th edition, 2 volumes. L. Salmii, Holmiae, 824 pp.Google Scholar
Martin, L. D. 1992. The status of the Late Paleocene birds Gastornis and Remiornis. Natural History Museum of Los Angeles County, Science Series 36, 97108.Google Scholar
Matsumoto, R., Buffetaut, E., Escuillié, F., Hervet, S. & Evans, S. E. 2013. New material of the choristodere Lazarussuchus (Diapsida, Choristodera) from the Paleocene of France. Journal of Vertebrate Paleontology 33, 319–39.Google Scholar
Mayr, G. 1998. A new family of Eocene zygodactyl birds. Senckenbergiana Lethaea 78, 199209.Google Scholar
Mayr, G. 2000a. New or previously unrecorded avian taxa from the Middle Eocene of Messel (Hessen, Germany). Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 3, 207–19.Google Scholar
Mayr, G. 2000b. A new raptor-like bird from the Lower Eocene of North America and Europe. Senckenbergiana Lethaea 80, 5965.Google Scholar
Mayr, G. 2002. An owl from the Paleocene of Walbeck, Germany. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 5, 283–8.Google Scholar
Mayr, G. 2005. The postcranial osteology and phylogenetic position of the Middle Eocene Messelastur gratulator Peters, 1994 – a morphological link between owls (Strigiformes) and falconiform birds? Journal of Vertebrate Paleontology 25, 635–45.Google Scholar
Mayr, G. 2007. The birds from the Paleocene fissure filling of Walbeck (Germany). Journal of Vertebrate Paleontology 27, 394408.Google Scholar
Mayr, G. 2009. Paleogene Fossil Birds. Berlin, Heidelberg: Springer, 262 pp.Google Scholar
Mayr, G. 2011. Well-preserved new skeleton of the Middle Eocene Messelastur substantiates sister group relationship between Messelasturidae and Halcyornithidae (Aves, ?Pan-Psittaciformes). Journal of Systematic Palaeontology 9, 159–71.Google Scholar
Mayr, G. 2015. A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes). Zoologica Scripta 44, 587602.Google Scholar
Mayr, G. 2016. The world's smallest owl, the earliest unambiguous charadriiform bird, and other avian remains from the early Eocene Nanjemoy Formation of Virginia (USA). Paläontologische Zeitschrift 90, 747–63.Google Scholar
Mayr, G. 2017a. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance. Chichester: Wiley-Blackwell, 293 pp.Google Scholar
Mayr, G. 2017b. The early Eocene birds of the Messel fossil site: a 48 million-year-old bird community adds a temporal perspective to the evolution of tropical avifaunas. Biological Reviews 92, 1174–88.Google Scholar
Mayr, G. 2017c. New species of Primozygodactylus from Messel and the ecomorphology and evolutionary significance of early Eocene zygodactylid birds (Aves, Zygodactylidae). Historical Biology 29, 875–84.Google Scholar
Mayr, G. 2017d. A small, “wader-like” bird from the early Eocene of Messel (Germany). Annales de Paléontologie 103, 141–7.Google Scholar
Mayr, G. & Clarke, J. 2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19, 527–53.Google Scholar
Mayr, G. & Peters, D. S. 1998. The mousebirds (Aves: Coliiformes) from the Middle Eocene of Grube Messel (Hessen, Germany). Senckenbergiana lethaea 78, 179–97.Google Scholar
Mayr, G. & Weidig, I. 2004. The Early Eocene bird Gallinuloides wyomingensis – a stem group representative of Galliformes. Acta Palaeontologica Polonica 49, 211–7.Google Scholar
McNamara, M. E., Orr, P. J., Kearns, S. L., Alcalá, L., Anadón, P. & Penalver Molla, E. 2009. Soft-tissue preservation in Miocene frogs from Libros, Spain: insights into the genesis of decay microenvironments. Palaios 24, 104–17.Google Scholar
Mourer-Chauviré, C. 1992. The Galliformes (Aves) from the Phosphorites du Quercy (France): systematics and biostratigraphy. Natural History Museum of Los Angeles County, Science Series 36, 6795.Google Scholar
Mourer-Chauviré, C. 1994. A large owl from the Palaeocene of France. Palaeontology 37, 339–48.Google Scholar
Mourer-Chauviré, C. 1995. The Messelornithidae (Aves: Gruiformes) from the Paleogene of France. Courier Forschungsinstitut Senckenberg 181, 95105.Google Scholar
Mourer-Chauviré, C. 1996. Paleogene avian localities of France. In Tertiary Avian Localities of Europe (ed. J. Mlíkovský). Acta Universitatis Carolinae, Geologica 39, 567–98.Google Scholar
Mourer-Chauviré, C. & Bourdon, E. 2016. The Gastornis (Aves, Gastornithidae) from the Late Paleocene of Louvois (Marne, France). Swiss Journal of Palaeontology 135, 327–41.Google Scholar
Nabozhenko, M. V. & Kirejtshuk, A. G. 2014. Cryptohelops menaticus – a new genus and species of the tribe Helopini (Coleoptera: Tenebrionidae) from the Palaeocene of Menat (France). Comptes Rendus Palevol 13, 65–71.Google Scholar
Nabozhenko, M., & Kirejtshuk, A. 2017. The oldest opatrine terrestrial darkling beetle (Coleoptera: Tenebrionidae: Tenebrioninae) from the Paleocene of Menat (France). Palaeontologische Zeitschrift 91, 307–13.Google Scholar
Nel, A. 2008. The oldest bee fly in the French Paleocene (Diptera: Bombyliidae). Comptes Rendus Palevol 7, 401–5.Google Scholar
Ni, X., Gebo, D. L., Dagosto, M., Meng, J., Tafforeau, P., Flynn, J. J. & Beard, K. C. 2013. The oldest known primate skeleton and early haplorhine evolution. Nature 498, 60–4.Google Scholar
Painter, T. J. 1991. Lindow man, Tollund man and other peat-bog bodies: the preservative and antimicrobial action of sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers 15, 123–42.Google Scholar
Peters, D. S. 1988. Die Messel-Vögel ‒ eine Landvogelfauna. In Messel ‒ Ein Schaufenster in die Geschichte der Erde und des Lebens (eds Schaal, S. & Ziegler, W.), pp. 135–51. Frankfurt am Main: Kramer, 315 pp.Google Scholar
Piton, L.-E. 1940. Paléontologie du gisement éocène de Menat (Puy-de-Dôme) (flore et faune). Mémoires de la Société d'Histoire Naturelle d'Auvergne 1, 1303.Google Scholar
Prum, R. O., Torres, R. H., Williamson, S. & Dyck, J. 1998. Coherent light scattering by blue feather barbs. Nature 396, 28–9.Google Scholar
Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M. & Lemmon, A. R. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–73.Google Scholar
Rich, P. V. & Bohaska, D. J. 1981. The Ogygoptyngidae, a new family of owls from the Paleocene of North America. Alcheringa 5, 95102.Google Scholar
Russell, D. E. 1967. Sur Menatotherium et l’âge paléocène du gisement de Menat (Puy-de-Dôme). Problèmes actuels de paléontologie. Évolution des vertébrés. Colloques Internationaux du C.N.R.S. 163, 483–9.Google Scholar
Saitta, E. T., Rogers, C., Brooker, R. A., Abbott, G. D., Kumar, S., O'Reilly, S. S., Donohoe, P., Dutta, S., Summons, R. E. & Vinther, J. 2017. Low fossilization potential of keratin protein revealed by experimental taphonomy. Palaeontology 60, 547–56.Google Scholar
Smith, T., Quesnel, F., De Ploëg, G., De Franceschi, D., Métais, G., De Bast, E., Solé, F., Folie, A., Boura, A., Claude, J., Dupuis, C., Gagnaison, C., Iakovleva, A., Martin, J., Maubert, F., Prieur, J., Roche, E., Storme, J. Y., Thomas, R., Tong, H., Yans, J. & Buffetaut, E. 2014. First Clarkforkian equivalent Land Mammal Age in the latest Paleocene basal Sparnacian facies of Europe: fauna, flora, paleoenvironment and (bio)stratigraphy. PLoS One 9, e86229. doi: 10.1371/journal.pone.0086229.Google Scholar
Thibault, A., Jacob, J., Quesnel, F., LeMilbeau, C. & Bossard, N. 2014. Diversité et évolution des biomarqueurs moléculaires dans les sédiments du Maar de Menat (Paléocène). In Résumés de la 24e Réunion des Sciences de la Terre, pp. 280–1. Université de Pau et des Pays de l'Adour.Google Scholar
Turner-Walker, G. & Peacock, E. E. 2008. Preliminary results of bone diagenesis in Scandinavian bogs. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 151–9.Google Scholar
Vigors, N. A. 1825. XXII. Observations on the natural affinities that connect the orders and families of birds. Transactions of the Linnean Society of London 14, 395517.Google Scholar
Vincent, P. M., Aubert, M., Boivin, P., Cantagrel, J. M. & Lenat, J. P. 1977. Découverte d'un volcanisme paléocène en Auvergne: les maars de Menat et leurs annexes; étude géologique et géophysique. Bulletin de la Société géologique de France 19, 1057–70.Google Scholar
Vinther, J., Briggs, D. E. G., Prum, R. O. & Saranathan, V. 2008. The color of fossil feathers. Biology Letters 4, 522–5.Google Scholar
Wang, M., Mayr, G., Zhang, J. & Zhou, Z. 2012. Two new skeletons of the enigmatic, rail-like avian taxon Songzia Hou, 1990 (Songziidae) from the early Eocene of China. Alcheringa 36, 487–99.Google Scholar
Wappler, T., Currano, E. D., Wilf, P., Rust, J. & Labandeira, C. C. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proceedings of the Royal Society of London B: Biological Sciences 276, 4271–77.Google Scholar
Wedmann, S., Wappler, T. & Engel, M. S. 2009. Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae). Naturwissenschaften 96, 703–12.Google Scholar
Yuri, T., Kimball, R. T., Harshman, J., Bowie, R. C. K., Braun, M. J., Chojnowski, J. L., Han, K.-L., Hackett, S. J., Huddleston, C.-J., Moore, W.-S., Reddy, S., Sheldon, F. H., Steadman, D. W., Witt, C. C. & Braun, E. L. 2013. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology 2, 419–44.Google Scholar