Published online by Cambridge University Press: 20 January 2017
This section is meant to give readers an insight into the emerging field of nanotechnologies and risk regulation. It informs and updates readers on the latest European and international developments in nanotechnologies and risk regulation across different sectors (e.g., chemicals, food, cosmetics, pharmaceuticals) and policy areas (e.g., environmental protection, occupational health and consumer product, food and drug safety). The section analyzes how existing regulatory systems deal with new kinds of risks and reviews recent regulatory developments with a focus on how best to combine scientific freedom and technological progress with a responsible development and commercialization of nanotechnologies.
1 Vejerano, Eric P., et al., 2013, Emissions of Polycyclic Aromatic Hydrocarbons, Polychlorinated Dibenzo-p-Dioxins, and Dibenzofurans from Incineration of Nanomaterials, Environmental Science & Technology 47(9), 4866–4874. http://dx.doi.org/10.1021/es304895z CrossRefGoogle ScholarPubMed.
2 Vejerano, Eric P., et al., 2014, Characterization of particle emissions and fate of nanomaterials during incineration, Environmental Science: Nano 1(2), 133–143. http://dx.doi.org/10.1039/C3EN00080J Google Scholar.
3 Walser, Tobias, et al., 2012, Persistence of engineered nanoparticles in a municipal solid-waste incineration plant, Nat Nano 7(8), 520–524. http://dx.doi.org/10.1038/nnano.2012.64 CrossRefGoogle Scholar.
4 ICP-MS…mass spectrometry with inductively coupled plasma, for example to determine mass concentrations).
5 Liesen, I.-M., et al., 2014, Freisetzung von Nanopartikeln bei der thermischen Abfallentsorgung - Stabilität von Nanopartikeln in Flammen, in: Anke Brockeis/Martin Faultich/Sabine Flamme/Martin Kranert/Michael Nelles/Gerhard Rettenberger/Vera Susanne Rotter, 4. Wissenschaftskongress Abfall- und Ressourcenwirtschaft. 27 and 28 March 2013 in Münster: Deutsche Gesellschaft für Abfallwirtschaft e.V.
6 SMPS… Scanning Mobility Particle Sizer (SMPS) to determine the particle number concentration and number size distributions of aerosoles such as ultrafine dusts.
7 Transmission electron microscopy to determine the particle size, particle size frequencies and particle shape.
8 Gressler, Sabine, Part, Florian, Gazsó, André, 2014, “Nanowaste” – Nanomaterial-containing products at the end of their life cycle (NanoTrust Dossier No. 040en – August 2014). http://hw.oeaw.ac.at/0xc1aa500e_0x003146a3.pdf.
9 Liu, Jingyu, et al., 2012, Degradation Products from Consumer Nanocomposites: A Case Study on Quantum Dot Lighting, Environmental Science & Technology 46(6), 3220–3227. http://dx.doi.org/10.1021/es204430f CrossRefGoogle ScholarPubMed.
10 Nowack, Bernd, et al., 2013, Potential release scenarios for carbon nanotubes used in composites, Environment International 59(0), 1–11. http://www.sciencedirect.com/science/article/pii/S0160412013000834 CrossRefGoogle ScholarPubMed.
11 Sánchez, C., et al., 2014, Recyclability assessment of nanoreinforced plastic packaging, Waste Management 34(12), 2647–2655. http://www.sciencedirect.com/science/article/pii/S0956053X14003614 CrossRefGoogle Scholar.
12 Suryawanshi, Anil, et al., 2014, Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions, Nanoscale 6(20), 11664-11670. http://dx.doi.org/10.1039/C4NR02494J CrossRefGoogle ScholarPubMed.
13 Altalhi, Tariq, et al., 2013, Synthesis of well-organised carbon nanotube membranes from non-degradable plastic bags with tuneable molecular transport: Towards nanotechnological recycling, Carbon 63(0), 423–433. http://www.sciencedirect.com/science/article/pii/S0008622313006246 CrossRefGoogle Scholar.
14 Besseling, Ellen, et al., 2014, Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna, Environmental Science & Technology. http://dx.doi.org/10.1021/es503001d.
15 Caballero-Guzman, Alejandro, et al., 2015, Flows of engineered nanomaterials through the recycling process in Switzerland, Waste Management 36(0), 33–43. http://www.sciencedirect.com/science/article/pii/S0956053X14005236 CrossRefGoogle ScholarPubMed. Keller, Arturo A./Lazareva, Anastasiya, 2014, Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local, Environmental Science & Technology Letters 1(1), 65-70. http://dx.doi.org/10.1021/ez400106t Sun, Tian Yin, et al., 2014, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environmental Pollution 185(0), 69–76. http://www.sciencedirect.com/science/article/pii/S0269749113005241 CrossRefGoogle ScholarPubMed.
16 Gressler, Sabine, et al., supra note 8, p. 2.
17 Based on a market study in 2013, the following ENM were most commonly used in products: SiO2, CeO2, CNT, nanominerals, Al2O3, Cu, Fe, ZnO, TiO2 and Ag (Source: The Global Market for Nanomaterials 2002–2016: Production Volumes, Revenues and End Use Markets, 2013, Future Markets, Inc.: 2012; S. 371. http://www.futuremarketsinc.com/.
18 Mueller, Nicole C., et al., 2013, Modeling the flows of engineered nanomaterials during waste handling, Environmental Science: Processes & Impacts 15(1), 251–259. http://dx.doi.org/10.1039/C2EM30761H Google ScholarPubMed.
19 Hennebert, Pierre, et al., 2013, Experimental evidence of colloids and nanoparticles presence from 25 waste leachates, Waste Management 33(9), 1870–1881. http://www.sciencedirect.com/science/article/pii/S0956053X13002067 CrossRefGoogle ScholarPubMed.
20 Lozano, Paula/Berge, Nicole D., 2012, Single-walled carbon nanotube behavior in representative mature leachate, Waste Management 32(9), 1699-1711. http://www.sciencedirect.com/science/article/pii/S0956053X12001304.
21 Bolyard, Stephanie C., et al., 2013, Behavior of Engineered Nanoparticles in Landfill Leachate, Environmental Science & Technology 47(15), 8114–8122. http://dx.doi.org/10.1021/es305175e Google ScholarPubMed.
22 In the U.S.A., the so-called biological oxygen demand after five days (BSB5) as well as the biochemical methane gas potential (BMP) can be used to assess the biodegradability of leachates.
23 Yang, Yu, et al., 2012, Nanosilver impact on methanogenesis and biogas production from municipal solid waste, Waste Management 32(5), 816-825. http://www.sciencedirect.com/science/article/pii/S0956053X12000232.
24 For comparison, based on the estimates of Mueller et al., a concentration of maximally ca. 1 mg nano-Ag per kg slag is to be expected for Switzerland
25 Gressler, Sabine, et al., supra note 8, p. 3.
26 Flatscher, A. [Hrsg.], 2013, Bauzwerge, S. 32, Bau- und Immobilien Report, Ausgabe 11/2013, Report Verlag GmbH & Co KG, http://www.report.at/ifile/2013_11_bau.pdf.
27 Part, F., Zaba, C., Sinner, E.-K., Huber-Humer, M.,2014, Traceability of Quantum Dots in Mature Landfill Leachate in Abstract Proceeding of the 8th Intercontinental Landfill Research Symposium 2014, at Crystal River, Florida.
28 Zuin, S., Massari, A., Motellier, S., Golanski, S., Sicard, Y., 2013, “Nanowaste” management: NanoHouse Dissemination report N° 2013-05. http://www-nanohouse.cea.fr/home/liblocal/docs/Dissemination%20Reports/NanoHouse%20DR5.pdf.
29 NanoRem project, grant agreement No. 309517, Nanotechnology for Contaminated Land Remediation. http://www.nanorem.eu.
30 Apel, P., Becker, H., Dubbert, W., Kabardin, B., Rechenberg, B., Schwirn, K., Völker, D., Winde, C., 2012, Einsatz von Nanoeisen bei der Sanierung von Grundwasserschäden, Langfassung, Datenblatt Nanoprodukte, Umweltbundesamt, Dessau-Roßlau, http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/datenblatt_einsatz_von_nanoeisen_bei_der_sanierung_von_grundwasserschaeden-langfassung_dubbert.pdf
31 EC (European Commission), 2012, Types and uses of nanomaterials, including safety aspects. Accompanying the Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the Second Regulatory Review on Nanomaterials. European Commission. http://ec.europa.eu/health/nanotechnology/docs/swd_2012_288_en.pdf.
32 Al-Kattan, A. et al., 2013, Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15: 2186-93. http://dx.doi.org/10.1039/c3em00331k.
33 Saber, A. T., et al., 2012, Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint. Part Fibre Toxicol 9: 4. http://dx.doi.org/10.1186/1743-8977-9-4.
34 Kaegi, Ralf, et al., 2010, Release of silver nanoparticles from outdoor facades, Environmental Pollution 158(9), 2900–2905. http://dx.doi.org/10.1016/j.envpol.2010.06.009 CrossRefGoogle ScholarPubMed.
35 Mitrano, Denise M., et al., 2014, Presence of Nanoparticles in Wash Water from Conventional Silver and Nano-silver Textiles, ACS Nano 8(7), 7208–7219, http://dx.doi.org/10.1021/nn502228w CrossRefGoogle ScholarPubMed.
36 Kaegi, Ralf, et al., 2013, Fate and transformation of silver nanoparticles in urban wastewater systems. Water Research. http://dx.doi.org/10.1016/j.watres.2012.11.060.
37 Kiser, M. A., et al., 2009, Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants, Environmental Science & Technology 43(17), 6757–6763 http://dx.doi.org/10.1021/es901102n CrossRefGoogle ScholarPubMed.
38 ICP-OES: inductively coupled plasma optical emission spectrometry (e. g. for determination of concentration); SEM: scanning electron microscopy (e. g. for determination of particle size and shape).
39 Impellitteri, Christopher A., et al., 2013, Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids, Water Research 47(12), 3878–3886. http://dx.doi.org/10.1016/j.watres.2012.12.041 CrossRefGoogle ScholarPubMed.
40 Burkhardt, M., et al., 2010, Verhalten von Nanosilber in Kläranlagen und dessen Einfluss auf die Nitrifikationsleistung in Belebtschlamm, Umweltwissenschaften und Schadstoff-Forschung 22(5), 529–540 http://dx.doi.org/10.1007/s12302-010-0153-2 CrossRefGoogle Scholar.