Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-06T00:11:03.290Z Has data issue: false hasContentIssue false

OUT OF THE FRYING PAN INTO THE FIRE: THE COMMUNITY STRUCTURE OF EPIPHYTES IN BRAZILIAN SAVANNA AFTER THE PASSAGE OF FIRE

Published online by Cambridge University Press:  02 August 2019

L. Menini Neto
Affiliation:
Departamento de Botânica, Instituto de Ciências Biológicas Universidade Federal de Juiz de Fora, Campus Universitário s/n, bairro Martelos, 36036-900 Juiz de Fora – MG, Brazil. E-mail for correspondence: [email protected] Programa de Pós-graduação em Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, bairro Martelos, 36036-900 Juiz de Fora – MG, Brazil.
A. C. Maradini
Affiliation:
Programa de Pós-graduação em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa – MG, Brazil.
F. R. Moura
Affiliation:
Pós-Graduação em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Campos Morro do Cruzeiro s/n, bairro Bauxita, 35400-000 Ouro Preto – MG, Brazil.
P. Lima
Affiliation:
Programa de Pós-graduação em Sustentabilidade na Construção Civil, Instituto Federal do Sudeste de Minas Gerais, Campus Juiz de Fora, rua Bernardo Mascarenhas, 1283, bairro Fábrica, 36080-001 Juiz de Fora – MG, Brazil.
S. G. Furtado
Affiliation:
Programa de Pós-graduação em Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, bairro Martelos, 36036-900 Juiz de Fora – MG, Brazil.
Get access

Abstract

Cerrado sensu stricto (a physiognomy of the Cerrado domain, the Brazilian savanna) is subject to the annual occurrence of fire. Data on the epiphytic community in this physiognomy is scarce, as is evaluation of the influence of fire on its structure and composition. The aim of this study was to describe the structure of the vascular epiphyte community and its relationships with phorophytes in the Cerrado domain, Southeast Region of Brazil, after the passage of fire. We found the greatest abundance of epiphytes in the upper strata (65% of the individuals occurring above 3 m in height) and the dominance of three generalist species (Tillandsia streptocarpa, T. recurvata and Epiphyllum phyllanthus), suggesting that fire has an influence on the structure and composition of the epiphytic community.

Type
Articles
Copyright
© Trustees of the Royal Botanic Garden Edinburgh (2019) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, P. B. & Lawson, S. D. (1984). The effects of bushfire on Victorian epiphytic and lithophytic orchids. Orchadian 7(12): 282286.Google Scholar
Bartareau, T. & Skull, S. (1994). The effects of past fire regimes on the structural characteristics of coastal plain Melaleuca viridiflora Sol. ex Gaert. woodlands and the distribution patterns of epiphytes (Dendrobium canaliculatum R.Br., Dischidia nummularia R.Br.) in Northeastern Queensland. Biotropica 26(2): 118123.CrossRefGoogle Scholar
Bataghin, F. A., Muller, A., Pires, J. S. R., Barros, F., Fushita, A. T. & Scariot, E. C. (2012). Riqueza e estratificação vertical de epífitas vasculares na Estação Ecológica de Jataí – área de Cerrado no Sudeste do Brasil. Hoehnea 39(4): 615626.CrossRefGoogle Scholar
Benscoter, B. W. (2006). Post-fire bryophyte establishment in a continental bog. J. Veg. Sci. 17(5): 647652.CrossRefGoogle Scholar
Benzing, D. H. (1990). Vascular Epiphytes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
BFG [Brazil Flora Group] (2018). Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69(4): 15131527.CrossRefGoogle Scholar
Bittner, J. & Trejos-Zelaya, J. (1997). Analysis of the vascular epiphytes of tree ferns in a montane rain forest in Costa Rica. Revista Mat. Teoría y Aplicaciones 4(2): 6373.CrossRefGoogle Scholar
Blum, C. T., Roderjan, C. V. & Galvão, F. (2011). Composição florística e distribuição altitudinal de epífitas vasculares da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná, Brasil. Biota Neotrop. 11(4): 141159.CrossRefGoogle Scholar
Brasell, H. M. & Mattay, J. P. (1984). Colonization of bryophytes of burned eucalyptus forest in Tasmania, Australia: changes in biomass and element content. Bryologist 87(4): 302307.CrossRefGoogle Scholar
Castro, E. A. de & Kauffman, J. B. (1998). Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption of fire. J. Trop. Ecol. 14(3): 263283.CrossRefGoogle Scholar
Cook, G. D. (1991). Effects of fire regimen on two species of epiphytic orchids in tropical savannas of the Northern Territory. Austral. Ecol. 16(4): 537540.CrossRefGoogle Scholar
Dislich, R. & Mantovani, W. (2016). Vascular epiphytes assemblages in a Brazilian Atlantic Forest fragment: investigating the effect of host tree features. Plant Ecol. 217(1): 112.CrossRefGoogle Scholar
Furtado, S. G. & Menini Neto, L. (2015). Diversity of vascular epiphytes in two high altitude biotopes of the Brazilian Atlantic Forest. Brazil. J. Bot. 38(2): 295310.CrossRefGoogle Scholar
Furtado, S. G. & Menini Neto, L. (2016). Vascular epiphytic flora of a high montane environment of Brazilian Atlantic Forest: composition and floristic relationships with other ombrophilous forests. Acta Bot. Brasil. 30(3): 422436.CrossRefGoogle Scholar
Furtado, S. G. & Menini Neto, L. (2018). Elevational and phytophysiognomic gradients influence the epiphytic community in a cloud forest of the Atlantic phytogeographic domain. Plant Ecol. 219(6): 677690.CrossRefGoogle Scholar
Gentry, A. H. & Dodson, C. H. (1987). Diversity and biogeography of Neotropical vascular epiphytes. Ann. Missouri Bot. Gard. 74(2): 205233.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4(1): 19.Google Scholar
IBGE (2012). Manual Técnico da Vegetação Brasileira, 2nd edition. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.Google Scholar
Joanitti, S. A., Weiser, V. L., Cavassan, O. & Giles, A. L. (2017). Vascular epiphytes in a woodland savanna forest in southeastern Brazil. J. Torrey Bot. Soc. 144(4): 439449.CrossRefGoogle Scholar
Johansson, D. (1974). Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr. Suec. 59: 1136.Google Scholar
Kayll, A. J. (1968). Heat tolerance of tree seedlings. In: Proceedings: 8th Tall Timbers Fire Ecology Conference 1968, pp. 9–15.Google Scholar
Kersten, R. A. (2010). Epífitas vasculares – histórico, participação taxonômica e aspectos relevantes, com ênfase na Mata Atlântica. Hoehnea 37(1): 938.CrossRefGoogle Scholar
Kessler, M. & Siorak, Y. (2007). Desiccation and rehydration experiments on leaves of 43 pteridophyte species. Amer. Fern J. 97(4): 175185.CrossRefGoogle Scholar
Krömer, T., Kessler, M. & Gradstein, S. R. (2007). Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol. 189(2): 261278.CrossRefGoogle Scholar
Magurran, A. E. (2011). Medindo a Diversidade Biológica. Tradução de Dana Moiana Vianna. Curitiba: Editora UFPR.Google Scholar
Malheiros, R. (2016). A influência da sazonalidade na dinâmica da vida no bioma Cerrado. Revista Brasil. Climatol. 19: 113128.CrossRefGoogle Scholar
Mendonça, R. C., Felfili, J. M., Walter, B. M. T., Silva Júnior, M. C., Rezende, A. V., Filgueiras, T. S. & Nogueira, P. E. (1998). Flora vascular do cerrado. In: Almeida, M. S. & Almeida, S. P. (eds) Cerrado: Ambiente e Flora, pp. 287556. Planaltina: Embrapa – CPAC.Google Scholar
Miranda, A. C., Miranda, H. S., Dias, I. F. O. & Dias, B. F. S. (1993). Soil and air temperatures during prescribed cerrado fires in Central Brazil. J. Trop. Ecol. 9(3): 313320.CrossRefGoogle Scholar
Miranda, H. S., Neto, W. N. & Neves, B. M. C. (2010). Capítulo 2 – Caracterização das queimadas de cerrado. In: Miranda, H. S. (org.) Efeitos do Regime de Fogo Sobre a Estrutura de Comunidades do Cerrado: Projeto Fogo, pp. 2333. Brasília: Ibama [Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis]. Online. Available: http://www.ibama.gov.br/sophia/cnia/livros/efeitosdoregimedefogopaginarevisadasparaprovadigital.pdf (accessed 27 March 2018).Google Scholar
Mistry, J. (1998 ). Fire in the cerrado (savannas) of Brazil: an ecological review. Progr. Phys. Geogr. Earth Environm. 22(4): 425448.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. da & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Neves, S. C., Abreu, P. A. A. & Fraga, L. M. S. (2005). Fisiografia. In: Silva, A. C., Pedreira, L. C. V. S. F. & Abreu, P. A. A. (eds) Serra do Espinhaço Meridional: Paisagens e Ambientes, pp. 4758. Belo Horizonte: Editora O Lutador.Google Scholar
Paixão-Souza, B. (2016). Filogenia e evolução de Tillandsia subgênero Anoplophytum (Beer) Baker (Bromeliaceae – Tillandsioideae), 105 pp. Tese de doutorado, Museu Nacional – UFRJ, Rio de Janeiro.Google Scholar
Parker, G. G. (1995). Structure and microclimate of forest canopies. In: Lowman, M. D. & Nadkarni, N. M. (eds) Forest Canopies, pp. 73106. San Diego: Academic Press.Google Scholar
Pharo, E. J., Meagher, D. A. & Lindenmayer, D. B. (2013). Bryophyte persistence following major fire in eucalypt forest of southern Australia. Forest Ecol. Managem. 296: 2432.CrossRefGoogle Scholar
Ribeiro, J. F. & Walter, B. M. T. (1998). Capítulo III – fitofisionomias do bioma Cerrado. In: Sano, S. M. & Almeida, S. P. (eds) Cerrado: Ambiente e Flora, pp. 89166. Planaltina: Embrapa – CPAC.Google Scholar
Robertson, K. & Platt, W. (1992). Effects of fire on bromeliads in subtropical hammocks of Everglades National Park, Florida. Selbyana 13: 3949.Google Scholar
Robertson, K. & Platt, W. (2001). Effects of multiple disturbances (fire and hurricane) on epiphyte community dynamics in a subtropical forest, Florida, USA. Biotropica 33(4): 573582.CrossRefGoogle Scholar
Saxena, D. K., Arfeen, M. S. & Kaur, H. (2009). Effects of fire on bryocommunity of Kausani, India. Indian J. Forest. 32(1): 1322.Google Scholar
Silva, J. M. C. & Bates, J. M. (2002). Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. BioScience 52(3): 225233.CrossRefGoogle Scholar
Stocker, G. C. & Mort, J. J. (1981). Fire in tropical forests and woodlands of northern Australia. In: Gill, A. M., Groves, R. H. & Noble, J. R. (eds) Fire and the Australian Biota, pp. 427439. Canberra: Australian Academy of Science.Google Scholar
Sugden, A. M. & Robins, R. J. (1979). Aspects of the ecology of vascular epiphytes in Colombian cloud forests, I. The distribution of the epiphytic flora. Biotropica 11(3): 173188.CrossRefGoogle Scholar
Taylor, A. & Burns, K. C. (2015). Epiphyte community development throughout tree ontogeny: an island ontogeny framework. J. Veg. Sci. 26(5): 902910.CrossRefGoogle Scholar
Taylor, N. & Zappi, D. (2004). Cacti of Eastern Brazil. Richmond: Royal Botanic Gardens, Kew.Google Scholar
Ter Steege, H. & Cornelissen, J. H. C. (1989). Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21(4): 331339.CrossRefGoogle Scholar
Tremblay, R. L. & Castro, J. V. (2009). Circular distribution of an epiphytic herb on trees in a subtropical rain forest. Trop. Ecol. 50(2): 211217.Google Scholar
Versieux, L. M., Louzada, R. B., Viana, P. L., Mota, N. & Wanderley, M. G. L. (2010). An illustrated checklist of Bromeliaceae from Parque Estadual do Rio Preto, Minas Gerais, Brazil, with notes on phytogeography and one new species of Cryptanthus . Phytotaxa 10(1): 116.CrossRefGoogle Scholar
Waechter, J. L. & Batista, L. R. M. (2004). Abundância e distribuição de orquídeas epifíticas em uma floresta turfosa do Brasil Meridional. In: Barros, F. & Kerbauy, G. B. (eds) Orquideologia sul Americana: Uma Compilação Científica, pp. 135145. São Paulo: Secretaria do Meio Ambiente, Instituto de Botânica.Google Scholar
Wright, S. J. (1970). A method to determine heat-cause mortality in bunchgrass. Ecology 51(4): 582587.CrossRefGoogle Scholar
Zotz, G. (2013). The systematic distribution of vascular epiphytes – a critical update. Bot. J. Linn. Soc. 171(3): 453481.CrossRefGoogle Scholar
Zotz, G. (2016). Plants on Plants – the Biology of Vascular Epiphytes. Geneva: Springer.CrossRefGoogle Scholar