Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T11:03:06.253Z Has data issue: false hasContentIssue false

Function of the ice streams in the Scandinavian ice sheet: analyses of glacial geological data from southwestern Finland

Published online by Cambridge University Press:  03 November 2011

Mikko Punkari
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, U.K.

Abstract

Mapping of striae trends, macro-scale erosion forms, drumlins, morainic ridges, eskers, till fabric and boulder fans has facilitated reconstruction of glacial dynamics in terms of ice streams, marginal ice lobes and interlobate zones. Data were recorded in a computerised geographical information system (GIS).

Data on oriented glaciogenic elements are compared with the evolving patterns of glacial flow. The oldest flow occurred at a distance of several hundred kilometres inside the ice margin, while the later flows were dependent on the dynamics of the ice streams and fan-shaped ice lobes. A model is developed for the zonation of subglacial processes such as erosion, deposition and till deformation beneath the ice sheet. Most of the glacial forms, as well as lower till, were generated in a zone of basal melting and fast ice flow which existed some hundred kilometres from the receding margin and was associated with the formation of ice streams. These results are consistent with recent reconstructions of basal hydrology using mathematical models.

Ice streams were important for deglaciation dynamics. In the course of deglaciation, decreased shear stress on the water-saturated substratum resulted in ice-bed uncoupling which lowered the profile and accelerated flow in the ice streams. This did not happen in interstream areas as reflected by the glacial geomorphology typical of inactive ice.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aario, R 1977. Classification and terminology of morainic landforms in Finland. BOREAS 6, 87100.CrossRefGoogle Scholar
Aartolahti, T. 1972. On deglaciation in southern and western Finland. FENNIA 114. 84 pp.Google Scholar
Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. 1987a. Till beneath ice stream B. 3. Till deformation: evidence and implications. J. GEOPHYS RES 92: 8921–9.CrossRefGoogle Scholar
Alley, R. B., Blankenship, D. D., Rooney, S. T. & Bentley, C. R. 1987b. Continuous till deformation beneath ice sheet. The physical basis of ice sheet modelling, 8191. International Association of Hydrological Science, Publications 170.Google Scholar
Alley, R. B., Blankenship, D. D., Rooney, S. T. & Bentley, C. R. 1989. Sedimentation beneath ice shelves—the view from ice stream B. MAR GEOL 85, 101–20.CrossRefGoogle Scholar
Alley, R. B. & Whillans, I. M. 1991. Changes in the West Antarctic Ice Sheet. SCIENCE 254, 959–63.CrossRefGoogle ScholarPubMed
Andrews, J. T. 1982. On the reconstruction of Pleistocene ice sheets: A review. QUATERN SCI REV 1, 130.CrossRefGoogle Scholar
Barnet, D. M. & Holdsworth, G. 1974. Origin, morphology, and chronology of sublacustrine moraines, Generator Lake, Baffin Island, Northwest Territories, Canada. CAN J EARTH SCI 11, 380407.CrossRefGoogle Scholar
Bentley, C. R. 1987. Antarctic ice streams: A review. J GEOPHYS RES 92: 8843–58.CrossRefGoogle Scholar
Björck, S. & Digerfeldt, G. 1984. Climatic changes at Pleistocene/Holocene boundary in the Middle Swedish end moraine zone, mainly inferred from stratigraphic indications. In Mörner, N.-A. & Karlen, W. (eds) Climatic changes on a yearly to millenial basis, 3756. Amsterdam: Reidel.CrossRefGoogle Scholar
Boulton, G. S. 1974. Processes and patterns of glacial erosion. In Coates, D. R. (ed.) Glacial geomeorphology 4187. SUNY Publ. in Geomorphology, Binghamton, State Univ. of NY:Google Scholar
Boulton, G. S. 1984. Development of a theoretical model of sediment dispersal by ice sheets. Papers in symposium: Prospecting in areas of glaciated terrain, Glasgow, 1718 May 1984. The Institution of Mining and Metallurgy, 213–223.Google Scholar
Boulton, G. S. 1987. A theory of drumlin formation by subglacial sediment deformation. In Menzies, J. & Rose, J. (eds) Drumlin symposium 2580. Rotterdam. A. A. Balkema.Google Scholar
Boulton, G. S. & Clark, C. D. 1990. The Lauren tide ice sheet through the last glacial cycle: the topology of drift lineations as a key to the dynamic behaviour of former ice sheets. TRANS R SOC EDINBURGH: EARTH SCI 81, 327–47.CrossRefGoogle Scholar
Boulton, G. S. & Jones, A. S. 1979. Stability of temperate ice caps and ice sheets resting on beds of deformable sediment. J GLACIOL 24, 2943.CrossRefGoogle Scholar
Boulton, G. S. & Payne, A. 1992a. Reconstructing past and predicting future regional components of global change: the case of glaciation in Europe. Waste disposal and geology: scientific perspectives, 51134. The committee of the workshop WC-1 of the 29th IGC, Tokyo.Google Scholar
Boulton, G. S. & Payne, A. 1992b. Simulation of the European ice sheet through the last glacial cycle and prediction of future glaciation. SKB Technical Report 93–14, Swedish Nuclear Fuel and Waste Management Co., Stockholm. 138 pp.Google Scholar
Boulton, G. S. & Payne, A. 1994, Mid-latitude ice sheets through the last glacial cycle: glaciological and geological reconstructions. In Duplessy, J.-C. & Spyridakis, M.-T. (eds) Long-term climatic variations. NATO ASI Series I 22, 177212.Google Scholar
Boulton, G. S. & Spring, U. 1986. Isotopic fractionation at the base of polar and sub-polar glaciers. J GLACIOL 32, 475–85.CrossRefGoogle Scholar
Boulton, G. S., Smith, G. D., Jones, A. S. & Newsome, J. 1985. Glacial geology and glaciology of the last mid-latitude ice sheets. J GEOL SOC LONDON 142, 447–74.CrossRefGoogle Scholar
Budd, W. F. & Jenssen, D. 1987. Numerical modelling of the large-scale basal water flux under the West Antarctic ice sheet. In Van der Veen, C. J. & Oerlemans, J. (eds) Dynamics of the West Antarctic ice sheet, 293320. Amsterdam: Reidel.CrossRefGoogle Scholar
Clayton, L. & Moran, S. R. 1974. A glacial process-form model. In Coates, D. R. (ed.) Glacial Geomorphology, 89119. SUNY Publ. in Geomorphology, Binghamton, State Univ. of NY.Google Scholar
Donner, J. 1978. The dating of the level of the Baltic Ice Lake and the Salpausselkä moraines in South Finland. SOC SCI FENNICA, COMMENTAT PHYSICO-MATH 48, 1138.Google Scholar
Gow, A. J., Epstein, S. & Sheely, W. 1979. On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J GLACIOL 23, 185192.CrossRefGoogle Scholar
Hindmarsh, R. C. A., Boulton, G. S. & Hutter, K. 1989. Modes of operation of thermo-mechanically coupled ice sheets. AN GLACIOL 12, 5769.CrossRefGoogle Scholar
Hooke, R. LeB. 1977. Basal temperatures in polar ice sheets: A qualitative review. QUATERN RES 7, 113.CrossRefGoogle Scholar
Hoppe, G. 1957: Problems of glacial morphology and the Ice Age. GEOGR AN 39, 118.Google Scholar
Hughes, T. J. 1981. Numerical recontructions of paleo-ice sheets. In Denton, G. H. & Hughes, T. J (eds) The last great ice sheets, 222–1 A, New York: John Wiley.Google Scholar
Hughes, T. J., Denton, G. H., Andersen, B. G., Shilling, D. H., Fastook, J. L. & Lingle, C. S. 1981. The last great ice sheets: a global view. In Denton, G. H. & Hughes, T. J. (eds) The last great ice sheets, 263317. New York: John Wiley.Google Scholar
Hughes, T. J., Borns, H. W. Jr., Fastook, J. L., Hyland, M. R., Kite, J. S. & Lowell, T. V. 1985. Models of glacial reconstruction and deglaciation applied to Maritime Canada and New England. GEOL SOC AM, SPEC PAP 197, 139–50.Google Scholar
Kristiansson, J. 1986. The ice recession in the south-eastern part of Sweden. University of Stockholm, Department of Quaternary Geology, Report 7. 132 pp.Google Scholar
Lawson, D. E. 1981. Distinguishing characteristics of diamictons at the margin of the Matanuska glacier, Alaska. AN GLACIOL 2, 7883.CrossRefGoogle Scholar
Lundqvist, G. 1961. Beskrivning till karta över landisens avsmaltning och hogsta kustlinjen i Sverige. SVERIGES GEOL UNDERSOKNING, Ba:18. 148 pp.Google Scholar
Mangerud, J., Larsen, E., Longva, O. & Sonstegaard, E. 1979. Glacial history of western Norway 15,000–10,000 B.P. BOREAS 8, 179–87.CrossRefGoogle Scholar
Moran, S. R., Clayton, , Lee, , Hooke, , LeB, R.., Fenton, M. M. & Andriashek, L. D. 1980. Glacier-bed landforms of the prairie region of North America. J GLACIOL 25, 457–76.CrossRefGoogle Scholar
Niemelä, J. 1971. Die quartare Stratigraphie von Tonablagerungen und der Riickzug des Inlandeises zwischen Helsinki und Hämeenlinna. GEOL SURV FINL, BULL 253. 79 pp.Google Scholar
Niemelä, J. 1979 (ed.) Suomen sora- ja hiekkaesiintymat. GEOL SURV FINL, REP INVEST 42, 119 pp.Google Scholar
Okko, M. 1962: On the development of the First Salpausselkä, west of Lahti. BULL COM GEOL FINL 202. 162 pp.Google Scholar
Pessl, F. & Frederick, J. E. 1981. Sediment source for melt-water deposits. AN GLACIOL 2, 92–6.CrossRefGoogle Scholar
Punkari, M. 1979. Skandinavian jäätikön deglasiaatiovaiheen kieleke-virrat Etelä-Suomessa. Summary: The ice lobes of the Scandinavian ice sheet during the deglaciation in South Finland. GEOLOGI 31, 2228.Google Scholar
Punkari, M. 1980. The ice lobes of the Scandinavian ice sheet during the deglaciation in Finland. BOREAS 9, 307–10.CrossRefGoogle Scholar
Punkari, M. 1982. Glacial geomorphology and dynamics in the eastern parts of the Baltic Shield interpreted using Landsat imagery. PHOTOGRAMM J FINL 9, 7793.Google Scholar
Punkari, M. 1984. The relations between glacial dynamics and tills in the eastern part of the Baltic Shield. STRIAE 20, 4954.Google Scholar
Punkari, M. 1985. Glacial geomorphology and dynamics in Soviet Karelia interpreted by means of satellite imagery. FENNIA 163, 113–53.Google Scholar
Punkari, M. 1989. Glacial dynamics and related erosion-deposition processes in the Scandinavian ice sheet in south-western Finland: a remote sensing, fieldwork and computer modelling study. Final Report, Project 01/663, Research Council for the Natural Sciences, Academy of Finland, Helsinki. 86 p.Google Scholar
Rainio, H. 1985. Första Salpausselkä utgör randzonen för en landis som avancerat på nytt. Summary: The First Salpausselkä is a marginal formation of the outermost margin of a readvanced ice sheet. GEOLOGI 37, 70–7.Google Scholar
Rainio, H. 1993. The Heinola deglaciation and Salpausselkä readvance as recorded in the lithostratigraphy of the distal area of Salpausselkä I at Ihalainen, Lappeenranta Finland. In Autio, S. (ed.) Geological Survey of Finland, Current Research 1991–1992, GEOL SURV FINL, SPEC PAP 18, 5362.Google Scholar
Rainio, H., Kejonen, A., Kielosto, S. & Lahermo, P. 1986. Avancerade inlandsisen på nytt också till Mellanfinska randformationen? Summary: Is the Central Finland ice-marginal formation terminal? GEOLOGI 38, 95109.Google Scholar
Reeh, N. 1982. A plasticity theory approach to the steady-state shape of a three-dimensional ice sheet. J GLACIOL 28, 431–55.CrossRefGoogle Scholar
Repo, R. 1957. Untersuchungen liber die Bewegungen des Inlandeises in Nordkarelien. BULL COMM GEOL FINL 179. 178 pp.Google Scholar
Rose, K. E. 1979: Characteristics of ice flow in Marie Byrd Land, Antarctica. J GLACIOL 24, 6374.CrossRefGoogle Scholar
Saarnisto, M. 1982. Ice retreat and the Baltic Ice Lake in the Salpausselkä zone between Lake Päijänne and Lake Saimaa. AN ACAD SCI FENNICAE. A:III:134, 61–79.Google Scholar
Salonen, V.-P. 1986. Glacial transport distance distributions of surface boulders in Finland. GEOL SURV FINL, BULL 338. 57 pp.Google Scholar
Salonen, V.-P. & Glückert, G. 1992. Late-Weichselian glacial activity and sediments in southwestern Finland. SVERIGES GEOL UNDERSOKNING, SER. CA 81, 313–18.Google Scholar
Sauramo, M. 1923. Studies on the Quaternary varve sediments in southern Finland. FENNIA 44, 144.Google Scholar
Sauramo, M. 1924. Suomen geologinen yleiskartta, Lehti B 2, Tampere, Maalajikartan selitys SUOMEN GEOLOGINEN KOMISSIONI. 76 pp.Google Scholar
Shabtaie, S. & Bentley, C. R. 1987. West Antartic ice streams draining into the Ross Ice Shelf: Configuration and mass balance. J GEOPHYS RES 92: 1311–36.CrossRefGoogle Scholar
Shabtaie, S., Whillans, I. M. & Bentley, C. R. 1987. The morphology of Ice Streams A, B and C., West Antartica, and their environs. J GEOPHYS RES 92: 8865–83.CrossRefGoogle Scholar
Shaw, J. 1982. Melt-out till in the Edmonton area, Alberta, Canada. CAN J EARTH SCI 19, 1548–69.CrossRefGoogle Scholar
Shilts, W. W. 1984. Esker sedimentation models, Deep Rose Lake map area, District of Keewatin, GEOL SURV CAN, PAP 84: 217–22.Google Scholar
Stephenson, S. N. & Bindschadler, R. A. 1990. Is ice-stream evolution revealed by satellite imagery? AN GLACIOL 14, 273–7.CrossRefGoogle Scholar
Stuiver, M., Denton, G. H., Hughes, T. J. & Fastook, J. L. 1981. History of the marine ice sheet in West Antarctica during the last glaciation: A working hypothesis. In Denton, G. H. & Hughes, T. J. (eds) The last great ice sheets, 319436New York: John Wiley.Google Scholar
Sugden, D. E. & John, B. S. 1976. Glaciers and landscape. London: Edward Arnold.Google Scholar
Sugden, D. E. 1977. Reconstruction of the morphology, dynamics, and thermal characteristics of the Laurentide ice sheet at its maximum. ARCT ALP RES 9, 2147.CrossRefGoogle Scholar
Sugden, D. E. 1978. Glacial erosion by the Laurentide ice sheet. J GLACIOL 20, 367–91.CrossRefGoogle Scholar
Virkkala, K. 1963. On ice-marginal features in southwestern Finland. BULL COMM GEOL FINL 210, 176.Google Scholar
Vornberger, P. L. & Whillans, I. M. 1990. Crevasse deformation and examples from ice stream B, Antarctica. J GLACIOL 36, 310.CrossRefGoogle Scholar
Weertman, J. 1961. Mechanism for the formation of inner moraines found near the edge of cold ice caps and ice sheets. J GLACIOL 3, 965–78.CrossRefGoogle Scholar
Weertman, J. 1969. Water lubrication mechanism of glacial surges. CAN J EARTH SCI 6, 929–42.CrossRefGoogle Scholar
Weertman, J. 1972. General theory of water flow at the base of glacier or ice sheet. REV GEOPHYS SPACE PHYS 10, 287333.CrossRefGoogle Scholar
Whillans, I. M., Bolzan, J. & Shabtaie, S. 1987. Velocity of ice stream B and C., Antarctica. J GEOPHYS RES 92, 8895–902.CrossRefGoogle Scholar
Zoltai, S. C. 1965. Glacial features of the Quetico-Nipigon area. Ontario. CAN J EARTH SCI 2, 247–69.CrossRefGoogle Scholar