Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T13:04:24.310Z Has data issue: false hasContentIssue false

Volcanism in Association with the Prelude to Mass Extinction and Environment Change Across the Permian-Triassic Boundary (PTB), Southern China

Published online by Cambridge University Press:  01 January 2024

Hanlie Hong*
Affiliation:
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, P.R. China
Shucheng Xie
Affiliation:
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, P.R. China
Xulong Lai
Affiliation:
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, P.R. China
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to better understand the provenance of the sediments and environmental change associated with the Permian-Triassic (P/T) biotic crisis, a comparative clay mineralogical study of the Permian-Triassic boundary (PTB) sediments between the Meishan section (the Global Stratotype Section and Point of the PTB) and the Xiakou section, southern China, was undertaken using X-ray diffraction and differential scanning calorimetry (DSC). The results showed that clay minerals of the packstone bed 24e, in which the preludial mass extinction occurred at Meishan, consist of 56% mixed-layer illite-smectite (I-S), 39% illite, and 5% kaolinite. A dehydroxylation effect was measured at 652°C, indicating that I-S and illite of this bed contain mainly cis-vacant (cv) layers related to volcanic origin. The dehydroxylation event correlates with bed P257 at Xiakou. The white clay bed 25 also corresponding to the main extinction event at Meishan contains 95% I-S and 5% kaolinite, with a strong endothermic effect at 676°C and a weaker one at 514°C in the DSC curve. These results are attributed to dehydroxylation of cv layers in I-S clays, suggesting that I-S in the white clay bed was derived from marine alteration of volcanic ash, in agreement with the conodont-correlated clay (P258) at Xiakou. (Conodonts are tooth-like microfossils and are usually used as an indicator of age in PTB stratigraphy.) Increases in chlorite and illite contents in the black clays (bed 26) at Meishan and the conodont-correlated black clay layer (P259b) at Xiakou probably indicate stronger erosional processes under cooler and more arid conditions. Volcanic materials found in a bed which marked the prelude to the main episode of mass extinction reinforce the temporal link between volcanism and the mass extinction.

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

References

Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite-smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.CrossRefGoogle Scholar
Basu, A.R. Petaev, M.I. Poreda, R.J. Jacobsen, S.B. and Becker, L., 2003 Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica Science 302 13881392 10.1126/science.1090852.CrossRefGoogle ScholarPubMed
Becker, L. Poreda, R.J. Hunt, A.G. Bunch, T.E. and Rampino, M., 2001 Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes Science 291 15301533 10.1126/science.1057243.CrossRefGoogle ScholarPubMed
Biscaye, P.E., 1965 Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans Geological Society of America Bulletin 76 803832 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.CrossRefGoogle Scholar
Bronger, A. Winter, R. and Sedov, S., 1998 Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: towards a Quaternary paleoclimatic record in Central Asia Catena 34 1934 10.1016/S0341-8162(98)00079-4.CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology Berlin Springer Verlag 623 10.1007/978-3-642-85916-8.CrossRefGoogle Scholar
Clauer, N. O’Neil, J.R. Bonnot-Courtois, C. and Holtzapffel, T., 1990 Morphological, chemical, and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments Clays and Clay Minerals 38 3346 10.1346/CCMN.1990.0380105.CrossRefGoogle Scholar
Courtillot, V. and Olson, P., 2007 Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events Earth and Planetary Science Letters 260 495504 10.1016/j.epsl.2007.06.003.CrossRefGoogle Scholar
Cuadros, J. and Altaner, S.P., 1998 Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods: Constraints on the smectite-to-illite transformation mechanism American Mineralogist 83 762774 10.2138/am-1998-7-808.CrossRefGoogle Scholar
de Wit, M.J. Ghosh, J.G. de Villiers, S. Rakotosolofo, N. Alexander, J. Tripathi, A. and Looy, C., 2002 Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial Gondwana sequences: clues to extinction patterns and delayed ecosystem recovery Journal of Geology 110 227246 10.1086/338411.CrossRefGoogle Scholar
Deconinck, J.F. and Chamley, H., 1995 Diversity of smectite origins in late Cretaceous sediments: Example of chalks from northern France Clay Minerals 30 365379 10.1180/claymin.1995.030.4.09.CrossRefGoogle Scholar
Dera, G. Pellenard, P. Neige, P. Deconinck, J.F. Pucéat, E. and Dommergues, J.L., 2009 Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons Palaeogeography, Palaeoclimatology, Palaeoecology 271 3951 10.1016/j.palaeo.2008.09.010.CrossRefGoogle Scholar
Drits, V.A., 2003 Structural and chemical heterogeneity of layer silicates and clay minerals Clay Minerals 38 403432 10.1180/0009855033840106.CrossRefGoogle Scholar
Drits, V.A. and Zviagina, B.B., 2009 Trans-vacant and cisvacant 2:1 layer silicates: Structural features, identification, and occurrence Clays and Clay Minerals 57 405415 10.1346/CCMN.2009.0570401.CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Muller, E., 1995 An improved model for structural transformation of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Drits, V.A. Sakharov, B.A. Lindgreen, H. and Salyn, A., 1997 Sequential structural transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales from the North Sea and Denmark Clay Minerals 32 351372 10.1180/claymin.1997.032.3.03.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Salyn, A.L. Ylagan, R. and McCarty, D.K., 1998 Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illitesmectites by thermal analysis and X-ray diffraction American Mineralogist 83 11881198 10.2138/am-1998-11-1207.CrossRefGoogle Scholar
Drits, V.A. Sakharov, B.A. Dainyak, L.G. Salyn, A.L. and Lindgreen, H., 2002 Structural and chemical heterogeneity of illite-smectites from Upper Jurassic mudstones of East Greenland related to volcanic and weathered parent rocks American Mineralogist 87 15901607 10.2138/am-2002-11-1209.CrossRefGoogle Scholar
Erwin, D.H., 1994 The Permo-Triassic extinction Nature 367 231236 10.1038/367231a0.CrossRefGoogle Scholar
Grasby, S.E. and Beauchamp, B., 2009 Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup Basin, Arctic Canada Chemical Geology 264 232246 10.1016/j.chemgeo.2009.03.009.CrossRefGoogle Scholar
Grice, K. Cao, C. Love, G.D. Böttcher, M.E. Twitchett, R.J. Grosjean, E. Summons, R.E. Turgeon, S.C. Dunning, W. and Jin, Y., 2005 Photic zone euxinia during the Permian-Triassic superanoxic event Science 307 706709 10.1126/science.1104323.CrossRefGoogle ScholarPubMed
Hallam, A. and Wignall, P.B., 1997 Mass Extinctions and their Aftermath Oxford Oxford University Press 330.CrossRefGoogle Scholar
Hallam, A. and Wignall, P.B., 1999 Mass extinctions and sealevel changes Earth Science Reviews 48 217250 10.1016/S0012-8252(99)00055-0.CrossRefGoogle Scholar
Hallam, A. Grose, J.A. and Ruffell, A.H., 1991 Paleoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France Palaeogeography. Palaeoclimateology, Palaeoecology 81 173187 10.1016/0031-0182(91)90146-I.CrossRefGoogle Scholar
Heydari, E. and Hassanzadeh, J., 2003 Deev Jahi model of the Permian-Triassic boundary mass extinction: a case for gas hydrates as the main cause of biological crisis on Earth Sedimentary Geology 163 147163 10.1016/j.sedgeo.2003.08.002.CrossRefGoogle Scholar
Holser, W.T. Schölaub, H.-P. Attrep, M. Boeckelmann, K. Klein, P. Magaritz, M. Orth, C.J. Fenninger, A. Jenny, C. Kralik, M. Mauritsch, H. Pak, E. Schramm, J.-M. Stattegger, K. and Schmöler, R., 1989 A unique geochemical record at the Permian/Triassic boundary Nature 337 3944 10.1038/337039a0.CrossRefGoogle Scholar
Hong, H.L. Li, Z. Xue, H.J. Zhu, Y.H. Zhang, K.X. and Xiang, S.Y., 2007 Oligocene clay mineralogy of the linxia basin: Evidence of paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan plateau Clays and Clay Minerals 55 491503 10.1346/CCMN.2007.0550504.CrossRefGoogle Scholar
Hong, H.L. Zhang, N. Li, Z.H. Xue, H.J. Xia, W.C. and Yu, N., 2008 Clay mineralogy across the P/T boundary of the Xiakou section, China: evidence of clay provenance and environment Clays and Clay Minerals 56 131143 10.1346/CCMN.2008.0560201.CrossRefGoogle Scholar
Hong, H.L. Gu, Y.S. Li, R.B. Zhang, K.X. and Li, Z.H., 2010 Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China Journal of Quaternary Science 25 662674 10.1002/jqs.1340.CrossRefGoogle Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., 1976 Mechanism of burial metamorphism of argillaceous sediment: 1 Mineralogical and chemical evidence. Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Islam, A.K.M.E. and Lotse, E.G., 1986 Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques Clay Minerals 21 3142 10.1180/claymin.1986.021.1.03.CrossRefGoogle Scholar
Jackson, M.L., 1978 Soil Chemical Analyses USA Authors’ publication Univ. of Wisconsin Madison.Google Scholar
Jiang, Y. Tang, Y. Dai, S. Zou, X. Qian, H. and Zhou, G., 2006 Pyrite and sulfur isotopic composition near the Permian-Triassic boundary in Meishan, Zhejiang Acta Geologica Sinica 80 12021207.Google Scholar
Jin, Y.G. Wang, Y. Wang, W. Shang, Q.H. Cao, C.Q. and Erwin, D.H., 2000 Pattern of marine mass extinction near the Permian-Triassic boundary in south China Science 289 432436 10.1126/science.289.5478.432.CrossRefGoogle ScholarPubMed
Kahle, M. Kleber, M. and Jahn, R., 2002 Review of XRDbased quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors Geoderma 109 191205 10.1016/S0016-7061(02)00175-1.CrossRefGoogle Scholar
Kaiho, K. Kajiwara, Y. Chen, Z.Q. and Gorjan, P., 2006 A sulfur isotope event at the end of the Permian Chemical Geology 235 3347 10.1016/j.chemgeo.2006.06.001.CrossRefGoogle Scholar
Kidder, D.L. and Worsley, T.R., 2003 Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery Palaeogeography, Palaeoclimatology, Palaeoecology 203 207237 10.1016/S0031-0182(03)00667-9.CrossRefGoogle Scholar
Knoll, A.H. Bambach, R.K. Payne, J.L. Pruss, S. and Fischer, W.W., 2007 Paleophysiology and end-Permian mass extinction Earth and Planetary Science Letters 256 295313 10.1016/j.epsl.2007.02.018.CrossRefGoogle Scholar
Korte, C. and Kozur, H.W., 2010 Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review Journal of Asian Earth Sciences 39 215235 10.1016/j.jseaes.2010.01.005.CrossRefGoogle Scholar
Korte, C. Kozur, H.W. and Mohtat-Aghai, P., 2004 Dzhulfian to lowermost Triassic delta 13C record at the Permian/Triassic boundary section at Shahreza, Central Iran Hallesches Jahrbuch für Geowissenschaften, Reihe B. Beiheft 18 7378.Google Scholar
Kump, L.R. Pavlov, A. and Arthur, M.A., 2005 Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia Geology 33 397400 10.1130/G21295.1.CrossRefGoogle Scholar
Lanson, B. Beaufort, D. Berger, G. Bauer, A. Cassagnabère, A. and Meunier, A., 2002 Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review Clay Minerals 37 122 10.1180/0009855023710014.CrossRefGoogle Scholar
Lindgreen, H. and Surlyk, F., 2000 Upper Permian-Lower Cretaceous clay mineralogy of East Greenland: provenance, palaeoclimate and volcanicity Clay Minerals 35 791806 10.1180/000985500547241.CrossRefGoogle Scholar
Lu, Q. Lei, X.R. and Liu, H.F., 1991 Genetic types and crystal chemical classification of irregular illite/smectite interstratified clay minerals Acta Mineralogica Sinica 11 97104.Google Scholar
Lu, Q. Lei, X.R. and Liu, H.F., 1993 Study of the stacking sequences of a kind of irregular mixed-layer illite-smectite (I/S) clay mineral Acta Geologica Sinica 67 123130.Google Scholar
Luo, G.M. Lai, X.L. Shi, G.R. Jiang, H.S. Yin, H.F. Xie, S.C. Tong, J.N. Zhang, K.X. He, W.H. and Wignall, P.B., 2008 Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian-Triassic transition in South China and its implication for mass extinct ion Palaeogeography Palaeoclimatology Palaeoecology 264 176187 10.1016/j.palaeo.2008.04.015.CrossRefGoogle Scholar
Maruoka, T. Koeberl, C. Hancox, P.J. and Reimold, W.U., 2003 Sulfur geochemistry across a terrestrial Permian- Triassic boundary section in the Karoo Basin South Africa Earth and Planetary Science Letters 206 101117 10.1016/S0012-821X(02)01087-7.CrossRefGoogle Scholar
McCarty, D.K. and Reynolds, R.C. Jr., 1995 Rotationally disordered illite-smectite in Paleozoic K-bentonites Clays and Clay Minerals 43 271284 10.1346/CCMN.1995.0430302.CrossRefGoogle Scholar
McCarty, D.K. and Reynolds, R.C. Jr., 2001 Three-dimensional crystal structures of illite-smectite minerals in paleozoic K-bentonites from the appalachian basin Clays and Clay Minerals 49 2435 10.1346/CCMN.2001.0490102.CrossRefGoogle Scholar
Meunier, A. Lanson, B. and Velde, B., 2004 Composition variation of illite-vermiculite-smectite mixed-layer minerals in a bentonite bed from Charente (France) Clay Minerals 39 317332 10.1180/0009855043930137.CrossRefGoogle Scholar
Meyer, K.M. Kump, L.R. and Ridgwell, A., 2008 Biogeochemical controls on photiczone euxinia during the end-Permian mass extinction Geology 36 747750 10.1130/G24618A.1.CrossRefGoogle Scholar
Millot, G., 1970 Geology of Clays Berlin Springer-Verlag 499 10.1007/978-3-662-41609-9.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C. Jr., 1997 X-Ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378.Google Scholar
Payne, J.L. and Kump, L.R., 2007 Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotopic fluctuations Earth and Planetary Science Letters 256 264277 10.1016/j.epsl.2007.01.034.CrossRefGoogle Scholar
Pearson, M.J., 1990 Clay mineral distribution and provenance in Mesozoic and Tertiary mudrocks of the Moray Firth and northern North Sea Clay Minerals 25 519541 10.1180/claymin.1990.025.4.10.CrossRefGoogle Scholar
Pearson, M.J. and Small, J.S., 1988 Illite-smectite diagenesis and palaeotemperatures in northern North Sea Quaternary to Mesozoic shale sequences Clay Minerals 23 109132 10.1180/claymin.1988.023.2.01.CrossRefGoogle Scholar
Pellenard, P. Deconinck, J.F. Huff, W.D. Thierry, J. Marchand, D. Fortwengler, D. and Trouiller, A., 2003 Characterization and correlation of Upper Jurassic (Oxfordian) bentonite deposits in the Paris Basin and the Subalpine Basin, France Sedimentology 50 10351060 10.1046/j.1365-3091.2003.00592.x.CrossRefGoogle Scholar
Renne, P.R. Zichao, Z. Richards, M.A. Black, M.T. and Basu, A.R., 1995 Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism Science 269 14131416 10.1126/science.269.5229.1413.CrossRefGoogle ScholarPubMed
Retallack, G.J., 2001 A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles Nature 411 287290 10.1038/35077041.CrossRefGoogle ScholarPubMed
Reynolds, R.C. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonite Clays and Clay Minerals 18 2536 10.1346/CCMN.1970.0180104.CrossRefGoogle Scholar
Robert, C. and Kennett, J.P., 1994 Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Claymineral evidence Geology 22 211214 10.1130/0091-7613(1994)022<0211:ASHEAT>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Schwertmann, U. Niederbudde, E.A., Jasmund, K. and Lagaly, G., 1993 Tonminerale in Böden Tonminerale und Tone, Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt Darmstadt, Germany Steinkopff Verlag 212265.Google Scholar
Sheldon, N.D., 2006 Abrupt chemical weathering increase across the Permian-Triassic boundary Palaeogeography Palaeoclimatology Palaeoecology 231 315321 10.1016/j.palaeo.2005.09.001.CrossRefGoogle Scholar
Singer, A., 1984 The palaeoclimatic interpretation of clay minerals in sediments Earth Science Reviews 21 251293 10.1016/0012-8252(84)90055-2.CrossRefGoogle Scholar
Smit, J. and Klaver, G., 1981 Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event Nature 292 4749 10.1038/292047a0.CrossRefGoogle Scholar
Tong, J.N. and Yang, Y., 1999 Significant progresses on the Lower Triassic conodonts, Meishan, Changxing, Zhejiang province Chinese Science Bulletin 42 25712573.Google Scholar
Tsipurski, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Vanderaveroet, P. and Deconinck, J.F., 1997 Clay mineralogy of Cenozoic sediments of the Atlantic City borehole, New Jersey Proceedings of the Ocean Drilling Program, 150X Scientific Results .CrossRefGoogle Scholar
Veevers, J.J. and Tewari, R.C., 1995 Permian-Carboniferous and Permian-Triassic magmatism in the rift zone bordering the Tethyan margin of southern Pangea Geology 23 467470 10.1130/0091-7613(1995)023<0467:PCAPTM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Wang, G.Q. and Xia, W.C., 2004 Conodont zonation across the Permian-Triassic boundary at the Xiakou section, Yichang city, Hubei province and its correlation with the Global Stratotype Section and Point of the PTB Canadian Journal of Earth Sciences 41 323330 10.1139/e04-008.Google Scholar
Wang, Z.Y., 1998 Permian sedimentary facies and sequence stratigraphy in Daxiakou section, Xingshan county, Hubei province Journal of Jianhan Petroleum Institute 20 17.Google Scholar
Weaver, C.E., 1989 Developments in Sedimentology Clays, Muds, and Shales 44 819.Google Scholar
Wignall, P.B. Morante, R. and Newton, R., 1998 The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils Geological Magazine 135 4762 10.1017/S0016756897008121.CrossRefGoogle Scholar
Wignall, P.B., 2001 Large igneous provinces and mass extinctions Earth-Science Reviews 53 133 10.1016/S0012-8252(00)00037-4.CrossRefGoogle Scholar
Weir, A.H. Ormerod, E.C. and El Mansey, I.M.I., 1975 Clay mineralogy of sediments of the Western Nile Delta Clay Minerals 10 369386 10.1180/claymin.1975.010.5.04.CrossRefGoogle Scholar
Xie, S.C. Pancost, R.D. Yin, H.F. Wang, H.M. and Evershed, R.P., 2005 Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction Nature 434 494497 10.1038/nature03396.CrossRefGoogle ScholarPubMed
Xie, S.C. Pancost, R.D. Huang, J.H. Wignall, P.B. Yu, J.X. Tang, X.Y. Chen, L. Huang, X.Y. and Lai, X.L., 2007 Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis Geology 35 10831086 10.1130/G24224A.1.CrossRefGoogle Scholar
Yang, J.X. and Wu, M., 2006 Synchronized oscillations in Phanerozoic chemical composition of seawater, carbonate sedimentation and biotic evolution: Progresses and prospects Geological Science and Technology Information 25 17.Google Scholar
Yin, H.F. Huang, S.J. Zhang, K.X. Hansen, H.J. Yang, F.Q. Ding, M.H. Bie, X.M., Sweet, W.C. Yang, Z.Y. Dickins, J.M. and Yin, H.F., 1992 The effects of volcanism on the Permo-Triassic mass extinction in South China Permo-Triassic Events in the Eastern Tethys Cambridge, UK Cambridge University Press 169174.Google Scholar
Yin, H.F. Zhang, K.X. Tong, J.N. Yang, Z.Y. and Wu, S.B., 2001 The global stratotype section and point (GSSP) of the Permian-Triassic boundary Episodes 24 102113.Google Scholar
Yin, H.F. Feng, K.L. Lai, X.L. Baud, A. and Tong, J.N., 2007 The protracted Permo-Triassic crisis and the multiact mass extinction around the Permian-Triassic boundary Global and Planetary Changes 55 120 10.1016/j.gloplacha.2006.06.005.CrossRefGoogle Scholar
Yin, H.F. Feng, K.L. Baud, A. Xie, S.C. Benton, M.J. Lai, X.L. and Bottjer, D.J., 2007 The prelude of the end-Permian mass extinction predates a postulated bolide impact International Journal of Earth Sciences 96 903909 10.1007/s00531-006-0135-1.CrossRefGoogle Scholar
Ylagan, R.F. Altaner, S.P. and Pozzuoli, A., 2000 Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza island, Italy Clays and Clay Minerals 48 610631 10.1346/CCMN.2000.0480603.CrossRefGoogle Scholar